首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dependence of the carbon concentrating mechanism of Palmaria palmata (L.) Kuntze on the growth light level was examined 1) to determine whether or not there is a threshold photon flux density (PFD) at which the inorganic carbon uptake mechanism can operate and 2) to attempt to quantify the relative energetic costs of acclimation to the two different limiting factors, PFD and dissolved inorganic carbon (DIC) concentration. Plants were grown at six PFDs: 5, 25, 50, 75, 95, and 125 μmol photons. m?2.s?1. Growth rates increased with increasing PFD from 5 to 50 μmol photons. m?2. s?1 and were light-saturated at 75, 95, and 125 μmol photons. m?2. s?1 Values of δ13C increased continuously with increasing growth PFD and did not saturate over the range of light levels tested. Time-resolved fluorescence characteristics indicated a progressive photoacclimation below 50 μmol photons. m?2. s?1. Analysis of chlorophyll fluorescence induction showed three levels of light use efficirncy associated with growth at 5 or 25, 50, and >75 μmol photons. m?2. s?1. The light-haruesting efficiency was inversely proportional to the effectiveness of DIC acquisition in plants grown at the six PFDs. These data were interpreted to indicate that there is a physiological tradeoff between photosynthetic efficiency and bicarbonate use in this species.  相似文献   

2.
Phaeodactylum tricornutum Bohlin was maintained in exponential growth over a range of photon flux densities (PFD) from 7 to 230 μmol·m?2s?1. The chlorophyll a-specific light absorption coefficient, maximum quantum yield of photosynthesis, and C:N atom ratio were all independent of the PFD to which cells were acclimated. Carbon- and cell-specific, light-satuated, gross photosynthesis rates and dark respiration rates were largely independent of acclimation PFD. Decreases in the chlorophyll a-specific, gross photosynthesis rate and the carbon: chlorophyll ratio and increases of cell- or carbon-specific absorption coefficients were associated with an increase in cell chlorophyll a in cultures acclimated to low PFDs. The compensation PFD for growth was calculated to be 0.5 μmol·m?2s?1. The maintenance metabolic rate (2 × 10?7s?1), calculated on the basis of the compensation PFD, is an order of magnitude lower than the measured dark respiration rate(2.7 × 10?6mol O2·mol C?1s?1). Maintenance of high carbon-specific, light-saturated photosynthesis rates in cells acclimated to low PFDs may allow effective use of short exposures to high PFDs in a temporally variable light environment.  相似文献   

3.
Growth rate, pigment composition, and noninvasive chl a fluorescence parameters were assessed for a noncalcifying strain of the prymnesiophyte Emiliania huxleyi Lohman grown at 50, 100, 200, and 800 μmol photons·m?2·s?1. Emiliania huxleyi grown at high photon flux density (PFD) was characterized by increased specific growth rates, 0.82 d?1 for high PFD grown cells compared with 0.38 d?1 for low PFD grown cells, and higher in vivo chl a specific attenuation coefficients that were most likely due to a decreased pigment package, consistent with the observed decrease in cellular photosynthetic pigment content. High PFD growth conditions also induced a 2.5‐fold increase in the pool of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin responsible for dissipation of excess energy. Dark‐adapted maximal photochemical efficiency (Fv/Fm) remained constant at around 0.58 for cells grown over the range of PFDs, and therefore the observed decline, from 0.57 to 0.33, in the PSII maximum efficiency in the light‐adapted state, (Fv′/Fm′), with increasing growth PFD was due to increased dissipation of excess energy, most likely via the xanthophyll cycle and not due to photoinhibition. The PSII operating efficiency (Fq′/Fm′) decreased from 0.48 to 0.21 with increasing growth PFD due to both saturation of photochemistry and an increase in nonphotochemical quenching. The changes in the physiological parameters with growth PFD enable E. huxleyi to maximize rates of photosynthesis under subsaturating conditions and protect the photosynthetic apparatus from excess energy while supporting higher saturating rates of photosynthesis under saturating PFDs.  相似文献   

4.
To identify processes that might account for differences in growth rates of rhodophytes under constant and dynamic light supply, we examined nonequilibrium gas exchange by measuring time courses of photoinduction, loss of photoinduction, and respiration rates immediately after the light–dark transition. Using the rhodophyte species Palmaria palmata (Huds.) Lamour and Lomentaria articulata (Huds.) Lyngb., we compared the effects of growth-saturating constant photon flux density (PFD) (95 μmol photons · m?2· s?1) to those of a dynamic light supply modeled on canopy movements in the intertidal zone (25 μmol photons · m?2· s?1 background PFD plus light flecks of 350 μmol photons · m?2· s?1, 0.1 Hz). The time required for P. palmata and L. articulata to be fully photoinduced was not affected by the dynamics of light supply. L. articulata required only 6 min of illumination with either fluctuating or constant light to be completely induced compared to 20 min for P. palmata. The latter species also lost photoinduction more rapidly than did L. articulata in the dark. There was no significant decline in photoinduction state for either species at the background PFD. The time courses of respiration after illumination with constant and fluctuating light were significantly different for P. palmata but not for L. articulata when the total photon dose was equal. In general, gas exchange of P. palmata appeared to be particularly sensitive to the temporal distribution of light supply whereas that of L. articulata was sensitive to the amplitude of variations, being photoinhibited at high PFD. These results are discussed in terms of the different mechanisms of inorganic carbon acquisition in the two species.  相似文献   

5.
Growth responses of Pithophora oedogonia (Mont.) Wittr. and Spirogyra sp. to nine combinations of temperature (15°, 25°, and 35°C) and photon flux rate (50, 100, and 500 μmol·m?2·s?1) were determined using a three-factorial design. Maximum growth rates were measured at 35°C and 500 pmol·m?2·s?1 for P. oedogonia (0.247 d?1) and 25°C and 500 μmol·m?2·s?1 for Spirogyra sp. (0.224 d?1). Growth rates of P. oedogonia were strongly inhibited at 15°C (average decrease= 89%of maximum rate), indicating that this species is warm stenothermal. Growth rates of Spirogyra sp. were only moderately inhibited at 15° and 35°C (average decrease = 36 and 30%, respectively), suggesting that this species is eurythermal over the temperature range employed. Photon flux rate had a greater influence on growth of Spirogyra sp. (31% reduction at 50 pmol·m?2·s?1 and 25°C) than it did on growth of P. oedogonia (16% reduction at 50 μmol·m?2·s?1 and 35°C). Spirogyra sp. also exhibited much greater adjustments to its content of chlorophyll a (0.22–3.34 μg·mg fwt?1) than did P. oedogonia (1.35–3.08 μg·mg fwt?1). The chlorophyll a content of Spirogyra sp. increased in response to both reductions in photon flux rate and high temperatures (35°C). Observed species differences are discussed with respect to in situ patterns of seasonal abundance in Surrey Lake, Indiana, the effect of algal mat anatomy on the internal light environment, and the process of acclimation to changes in temperature and irradiance conditions.  相似文献   

6.
The compensation point for growth of Phaeodactylum tricornutum Bohlin is less than 1 μmol. m?2s?1. Growth at low PFDs (<3.5 μmol. m?2.s?1) does not appear to reduce the maximum quantum efficiency of photosynthesis (øm) or to greatly inhibit the potential for light-saturated, carbon-specific photosynthesis (Pmc). The value for øm in P. tricornutum is 0.10–0.12 mol O2-mol photon?1, independent of acclimation PFD between 0.75 and 200 μmol.m?2.s?1 in nutrient-sufficient cultures. Pmc in cells of P. tricornutum acclimated to PFDs <3.5 μmol m?2?s?1 is approximately 50% of the highest value obtained in nutrient-sufficient cultures acclimated to growth-rate-saturating PFDs. In addition, growth at low PFDs does not severely restrict the ability of cells to respond to an increase in light level. Cultures acclimated to growth at lees than 1% of the light-saturated growth rate respond rapidly to a shift-up in PFD after a short initial lag period and achieve exponential growth rates of 1.0 d?1 (65% of the light- and nutrient-saturated maximum growth rate) at both 40 and 200 μmol.m?2.s?1  相似文献   

7.
The growth characteristics of Haematococcus pluvialis Flotow were determined in batch culture. Optimal temperature for growth of the alga was between 25° and 28°C, at which the specific growth rate was 0.054 h?1. At higher temperatures, no cell division was observed, and cell diameter increased from 5 to 25 μm. The saturated irradiance for growth of the alga was 90 μmol quanta · m?2·s?1; under higher irradiances (e.g. 400 μmol quanta·m?2·s?1) astaxanthin accumulation was induced. Growth rate, cell cycle, and astaxanthin accumulation were significantly affected by growth conditions. Careful attention should be given to the use of optimal growth conditions when studying these processes.  相似文献   

8.
Photosynthesis and respiration of three Alaskan Porphyra species, P. abbottiae V. Krishnam., P. pseudolinearis Ueda species complex (identified as P. pseudolinearis” below), and P. torta V. Krishnam., were investigated under a range of environmental parameters. Photosynthesis versus irradiance (PI) curves revealed that maximal photosynthesis (Pmax), irradiance at maximal photosynthesis (Imax), and compensation irradiance (Ic) varied with salinity, temperature, and species. The Pmax of Porphyra abbottiae conchocelis varied between 83 and 240 μmol O2 · g dwt?1 · h?1 (where dwt indicates dry weight) at 30–140 μmol photons · m?2 · s?1 (Imax) depending on temperature. Higher irradiances resulted in photoinhibition. Maximal photosynthesis of the conchocelis of P. abbottiae occurred at 11°C, 60 μmol photons · m?2·s?1, and 30 psu (practical salinity units). The conchocelis of P. “pseudolinearis” and P. torta had similar Pmax values but higher Imax values than those of P. abbottiae. The Pmax of P. “pseudolinearis” conchocelis was 200–240 μmol O2 · g dwt?1 · h?1 and for P. torta was 90–240 μmol O2 · g dwt?1 · h?1. Maximal photosynthesis for P. “pseudolinearis” occurred at 7°C and 250 μmol photons · m?2 · s?1 at 30 psu, but Pmax did not change much with temperature. Maximal photosynthesis for P. torta occurred at 15°C, 200 μmol photons · m?2 · s?1, and 30 psu. Photosynthesis rates for all species declined at salinities <25 or >35 psu. Estimated compensation irradiances (Ic) were relatively low (3–5 μmol · photons · m?2 · s?1) for intertidal macrophytes. Porphyra conchocelis had lower respiration rates at 7°C than at 11°C or 15°C. All three species exhibited minimal respiration rates at salinities between 25 and 35 psu.  相似文献   

9.
Although sea‐ice represents a harsh physicochemical environment with steep gradients in temperature, light, and salinity, diverse microbial communities are present within the ice matrix. We describe here the photosynthetic responses of sea‐ice microalgae to varying irradiances. Rapid light curves (RLCs) were generated using pulse amplitude fluorometry and used to derive photosynthetic yield (ΦPSII), photosynthetic efficiency (α), and the irradiance (Ek) at which relative electron transport rate (rETR) saturates. Surface brine algae from near the surface and bottom‐ice algae were exposed to a range of irradiances from 7 to 262 μmol photons · m?2 · s?1. In surface brine algae, ΦPSII and α remained constant at all irradiances, and rETRmax peaked at 151 μmol photons · m?2 · s?1, indicating these algae are well acclimated to the irradiances to which they are normally exposed. In contrast, ΦPSII, α, and rETRmax in bottom‐ice algae reduced when exposed to irradiances >26 μmol photons · m?2 · s?1, indicating a high degree of shade acclimation. In addition, the previous light history had no significant effect on the photosynthetic capacity of bottom‐ice algae whether cells were gradually exposed to target irradiances over a 12 h period or were exposed immediately (light shocked). These findings indicate that bottom‐ice algae are photoinhibited in a dose‐dependent manner, while surface brine algae tolerate higher irradiances. Our study shows that sea‐ice algae are able to adjust to changes in irradiance rapidly, and this ability to acclimate may facilitate survival and subsequent long‐term acclimation to the postmelt light regime of the Southern Ocean.  相似文献   

10.
The red seaweed Gracilariopsis is an important crop extensively cultivated in China for high‐quality raw agar. In the cultivation site at Nanao Island, Shantou, China, G. lemaneiformis experiences high variability in environmental conditions like seawater temperature. In this study, G. lemaneiformis was cultured at 12, 19, or 26°C for 3 weeks, to examine its photosynthetic acclimation to changing temperature. Growth rates were highest in G. lemaneiformis thalli grown at 19°C, and were reduced with either decreased or increased temperature. The irradiance‐saturated rate of photosynthesis (Pmax) decreased with decreasing temperature, but increased significantly with prolonged cultivation at lower temperatures, indicating the potential for photosynthesis acclimation to lower temperature. Moreover, Pmax increased with increasing temperature (~30 μmol O2 · g?1FW · h?1 at 12°C to 70 μmol O2 · g?1FW · h?1 at 26°C). The irradiance compensation point for photosynthesis (Ic) decreased significantly with increasing temperature (28 μmol photons · m?2 · s?1 at high temperature vs. 38 μmol photons · m?2 · s?1 at low temperature). Both the photosynthetic light‐ and carbon‐use efficiencies increased with increasing growth or temperatures (from 12°C to 26°C). The results suggested that the thermal acclimation of photosynthetic performance of G. lemaneiformis would have important ecophysiological implications in sea cultivation for improving photosynthesis at low temperature and maintaining high standing biomass during summer. Ongoing climate change (increasing atmospheric CO2 and global warming) may enhance biomass production in G. lemaneiformis mariculture through the improved photosynthetic performances in response to increasing temperature.  相似文献   

11.
The effects of the triazine herbicide, simazine, on photosynthetic oxygen evolution and growth rate in photoacclimated populations of Anabaena circinalis Rabenhorst were investigated. Chemostat populations were acclimated to photon flux densities (PFDs) of 50, 130, and 230 μmol·m?2·s?1 of photosynthetic active radiation (PAR), Decreases in chlorophyll a (Chl a). c-phycocyanin (CPC), and total carotenoid (TCar) contents and CPC: Chl a and CPC: TCar ratios of populations coincided with increasing PFD, Polynomial regression models that characterize inhibition of photosynthesis for populations acclimated to 50 and 130 μmol photons·m?2·s?1 PAR were distinct from the model for populations acclimated to 230 μmol photons·m?2·s?1 PAR. Simazine concentrations that, depressed oxygen evolution 50% compared to controls decreased with increasing PFD. Increases and decreases in both biomass and growth rate coincided with increasing PFD and simazine concentration, respectively. Simazine concentrations that depressed growth rate 50% compared to controls increased with decreasing PFD. The differences in photosynthetic and growth inhibition among photoacclimated populations indicate that sensitivity to photosystem II inhibitors is affected by alterations in pigment contents.  相似文献   

12.
D. H. Greer  W. A. Laing 《Planta》1989,180(1):32-39
Intact leaves of kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) from plants grown in a range of controlled temperatures from 15/10 to 30/25°C were exposed to a photon flux density (PFD) of 1500 μmol·m−2·s−1 at leaf temperatures between 10 and 25°C. Photoinhibition and recovery were followed at the same temperatures and at a PFD of 20 μmol·m−2·s−1, by measuring chlorophyll fluorescence at 77 K and 692 nm, by measuring the photon yield of photosynthetic O2 evolution and light-saturated net photosynthetic CO2 uptake. The growth of plants at low temperatures resulted in chronic photoinhibition as evident from reduced fluorescence and photon yields. However, low-temperature-grown plants apparently had a higher capacity to dissipate excess excitation energy than leaves from plants grown at high temperatures. Induced photoinhibition, from exposure to a PFD above that during growth, was less severe in low-temperature-grown plants, particularly at high exposure temperatures. Net changes in the instantaneous fluorescence,F 0, indicated that little or no photoinhibition occurred when low-temperature-grown plants were exposed to high-light at high temperatures. In contrast, high-temperature-grown plants were highly susceptible to photoinhibitory damage at all exposure temperatures. These data indicate acclimation in photosynthesis and changes in the capacity to dissipate excess excitation energy occurred in kiwifruit leaves with changes in growth temperature. Both processes contributed to changes in susceptibility to photoinhibition at the different growth temperatures. However, growth temperature also affected the capacity for recovery, with leaves from plants grown at low temperatures having moderate rates of recovery at low temperatures compared with leaves from plants grown at high temperatures which had negligible recovery. This also contributed to the reduced susceptibility to photoinhibition in low-temperature-grown plants. However, extreme photoinhibition resulted in severe reductions in the efficiency and capacity for photosynthesis.  相似文献   

13.
The terrestrial cyanobacterium Nostoc commune Vaucher ex Bornet et Flahault occurs worldwide, including in Japan and on the Antarctic continent. The terrestrial green alga Prasiola crispa (Lightf.) Kütz. is also distributed in Antarctica. These two species need to acclimate to the severe Antarctic climate including low ambient temperature and desiccation under strong light conditions. To clarify this acclimation process, the physiological characteristics of the photosynthetic systems of these two Antarctic terrestrial organisms were assessed. The relative rate of photosynthetic electron flow in N. commune collected in Japan and in Antarctica reached maxima at 900 and 1,100 μmol photons · m?2 · s?1, respectively. The difference seemed to reflect the presence of high amounts of UV‐absorbing substances within the Antarctic cyanobacterium. On the other hand, the optimal temperatures for photosynthesis at the two locations were 30°C–35°C and 20°C–25°C, respectively. This finding suggested a decreased photosynthetic thermotolerance in the Antarctic strain. P. crispa exhibited desiccation tolerance and dehydration‐induced quenching of PSII fluorescence. Re‐reduction of the photooxidized PSI reaction center, P700, was also inhibited at fully dry states. Photosynthetic electron flow in P. crispa reached a maximum at 20°C–25°C and at a light intensity of 700 μmol photons ? m?2 ? s?1. Interestingly, the osmolarity of P. crispa cells suggested that photosynthesis is performed using water absorbed in a liquid form rather than water absorbed from the air. Overall, these data suggest that these two species have acclimated to optimally photosynthesize under conditions of the highest light intensity and the highest temperature for their habitat in Antarctica.  相似文献   

14.
Cryptomonas erosa Skuja, a planktonic alga, was grown in batch culture at different combinations of light intensity and temperature, under nutrient saturation. Growth was maximal (1.2 divisions · day?1) at 23.5 C and 0.043 ly · min?1, declining sharply with temperature (0.025 divisions-day?1 at 1 C). With decreasing temperature, the cells showed both light saturation and inhibition at much reduced light intensities. At the same time the compensation light intensity for growth declined towards a minimum of slightly above 0.4 × 10?4 ly · min?1 (~1 ft-c) at 1 C or <0.1 ly · day?1 (PAR). Cell division was more adversely affected by low temperature than carbon uptake, and the resulting excess production of photosynthate was both stored and excreted. Extreme storage of carbohydrates resulted in cell volumes and carbon content ca. 22 and 30 × greater, respectively, than the maxima observed for cells incubated in the dark, whereas, at growth inhibitory light levels, as much as 57% of the total assimilated carbon was excreted. A marked increase in cell pigment was observed at the lowest light levels (<10?3 ly · min?1), at high temperature. The growth response of C. erosa in culture provides insight into the abundance and distribution of cryptomonads and other small algal flagellates in nature.  相似文献   

15.
Two axenic, in vitro liquid suspension cultures were established for Agardhiella subulata (C. Agardh) Kraft et Wynne, and their growth characteristics were compared. This study illustrated how reliable routes for the development of suspension cultures of macrophytic red algae of terete thallus morphology can be achieved for biotechnology applications. Undifferentiated filament clumps of 2–8 mm diameter were established by induction of callus-like tissue from thallus explants, and lightly branched microplantlets of 2–10 mm length were established by regeneration of filament clumps. The filament clumps were susceptible to regeneration. Adventitious shoot formation was reliably induced from 40% to 70% of the filament clumps by gentle mixing at 100 rev min?1 on an orbital shaker. The specific growth rate of the microplantlets was higher than the filament clumps in nonagitated well plate culture (4%–6% per day for microplantlets vs. 2%–3% per day for filament clumps) at 24° C and 8–36 μmol photons·m?2·s?1 irradiance (10:14 h LD cycle) when grown on ASP12 artificial seawater medium at pH 8.6–8.9 with 20%–25% per day medium replacement. Oxygen evolution rate vs. irradiance measurements showed that relative to the filament clumps, microplantlets had a higher maximum specific oxygen evolution rate (Po,max= 0.181 ± 0.035 vs. 0.130 ± 0.023 mmol O2·g?1 dry cell mass·h?1), but comparable respiration rate (Qo= 0.040 ± 0.013 vs. 0.033 ± 0.017 mmol O2·g?1 dry cell mass·h?1), compensation point (Ic= 3.8 ± 2.4 vs. 5.7 ± 1.2 μmol photons·m?2·s?1), and light intensity at 63.2% of saturation (Ik= 17.5 ± 3.9 vs. 14.9 ± 2.6 μmol photons·m?2·s?1). The microplantlet culture was more suitable for suspension culture development than the filament clump culture because it was morphologically stable and exhibited higher growth rates.  相似文献   

16.
Stratospheric ozone depletion increases the amount of ultraviolet‐B radiation (UVBR) (280–320 nm) reaching the surface of the earth, potentially affecting phytoplankton. In this work, Anabaena sp. PCC 7120, a typically nitrogen (N)‐fixing filamentous bloom‐forming cyanobacterium in freshwater, was individually cultured in N‐deficient and N‐enriched media for long‐term acclimation before being subjected to ultraviolet‐B (UVB) exposure experiments. Results suggested that the extent of breakage in the filaments induced by UVBR increases with increasing intensity of UVB stress. In general, except for the 0.1 W · m?2 treatment, which showed a mild increase, UVB exposure inhibits photosynthesis as evidenced by the decrease in the chl fluorescence parameters maximum photochemical efficiency of PSII (Fv/Fm) and maximum relative electron transport rate. Complementary chromatic acclimation was also observed in Anabaena under different intensities of UVB stress. Increased total carbohydrate and soluble protein may provide some protection for the culture against damaging UVB exposure. In addition, N‐deficient cultures with higher recovery capacity showed overcompensatory growth under low UVB (0.1 W · m?2) exposure during the recovery period. Significantly increased (~830%) ATPase activity may provide enough energy to repair the damage caused by exposure to UVB.  相似文献   

17.
The comparative ecophysiology of nine culture isolates of the eulittoral red alga Bostrychia radicans (Montagne) Montague collected at sites from seven states along the east coast of the U.S.A. was investigated. The growth response in relation to different salinity and light conditions as well as photosynthesis-irradiance curves were studied. In addition, the effect of salt treatment on the content of the isomeric polyols d -sorbitol and d -dulcitol was also studied. All isolates grew between salinities of 5.3 and 70 ppt but with quite different optima and maxima. The isolates were all adapted to low light levels, i.e. growth was already recorded at 2.5 μmol photons·m?2·s?1, and growth rates peaked between 40 and 60 μmol photons·m?2·s-1. These low-light requirements were also reflected by the photosynthesis-irradiance curves: all plants had low light compensation points (2.5–9.7 μmol photons ·m?2·?1) and low photon fluence rates for initial saturation of photosynthesis (38.1–84.7 μmol photons·m?2·s?1, indicating that these isolates are “shade-adapted.” Isolates from Florida and Georgia synthesized and accumulated both the osmolytes d -sorbitol and d -dulcitol in increasing salinities, whereas only d -sorbitol was present in plants from North Carolina north to Connecticut. d -sorbitol was always strongly involved in osmotic acclimation. In various isolates from the same location in South Carolina, both polyol patterns were found, i.e. d -sorbitol plus d -dulcitol and d -sorbitol only. All data indicate that B. radicans exhibits a broad salinity tolerance and a low-light preference, which explain the successful colonization of this alga on various intertidal and shaded substrates. The data also clearly indicate intraspecific differences among the nine isolates, which is interpreted as development of different physiological ecotypes.  相似文献   

18.
The two tropical estuarine dinoflagellates, Alexandrium tamiyavanichii Balech and A. minutum Halim, were used to determine the ecophysiological adaptations in relation to their temperate counterparts. These species are the two main causative organisms responsible for the incidence of paralytic shellfish poisoning (PSP) in Southeast Asia. The effects of light (10, 40, 60, and 100 μmol photons·m?2·s?1) and temperature (15, 20, and 25°C) on the growth, nitrate assimilation, and PST production of these species were investigated in clonal batch cultures over the growth cycle. The growth rates of A. tamiyavanichii and A. minutum increased with increasing temperature and irradiance. The growth of A. tamiyavanichii was depressed at lower temperature (20°C) and irradiance (40 μmol photons·m?2·s?1). Both species showed no net growth at 10 μmol photons·m?2·s?1 and a temperature of 15°C, although cells remained alive. Cellular toxin quotas (Qt) of A. tamiyavanichii and A. minutum varied in the range of 60–180 and 10–42 fmol PST·cell?1, respectively. Toxin production rate, Rtox, increased with elevated light at both 20 and 25°C, with a pronounced effect observed at exponential phase in both species (A. tamiyavanichii, r2=0.95; A. minutum, r2=0.96). Toxin production rate also increased significantly with elevated temperature (P<0.05) for both species examined. We suggest that the ecotypic variations in growth adaptations and toxin production of these Malaysian strains may reveal a unique physiological adaptation of tropical Alexandrium species.  相似文献   

19.
Eight species of marine phytoplankton commonly used in aquaculture were grown under a range of photon flux densities (PEDs) and analyzed for their fatty acid (FA) composition. Fatty and composition changed considerably at different PFDs although no consistent correlation between the relative proportion of a single FA and μ or chl a · cell?1 was apparent. Within an individual species the percentage of certain fatty acids covaried with PFDs, growth rate and/or chl a · cell?1. The light conditions which produced the greatest proportion of the essential fatty acids was species specific. Eicosapentaenoic acid. 20:5ω3 increased from 6.1% to 15.5% of the total fatty acids of Chaetoceros simplex Ostenfield grown at PFDs which decreased from 225 μE · m?2· s?1 to 6 μE · m?2· s?1, respectively. Most species had their greatest proportion of 20: 5ω3 at low levels of irradiance. Conversely, docosahexaenoic acid, 22:6ω3, decreased from 9.7% to 3.6% of the total fatty acids in Pavlova lutheri Droop as PFD decreased. The percentage of 22:6ω3 generally decreased with decreasing irradiances. In all diatoms the percentage of 16:0 was significantly correlated with PFD, and in three of five diatoms, with growth rate (μ). Results suggest that fatty acid composition is a highly dynamic component of cellular physiology, which responds significantly to variation in PFD.  相似文献   

20.
Growth and pigment concentrations of the, estuarine dinoflagellate, Prorocentrum mariae-lebouriae (Parke and Ballantine) comb. nov., were measured in cultures grown in white, blue, green and red radiation at three different irradiances. White irradiances (400–800 nm) were 13.4, 4.0 and 1.8 W · m?2 with photon flux densities of 58.7 ± 3.5, 17.4 ± 0.6 and 7.8 ± 0.3 μM quanta · m?2· s?1, respectively. All other spectral qualities had the same photon flux densities. Concentrations of chlorophyll a and chlorophyll c were inversely related to irradiance. A decrease of 7- to 8-fold in photon flux density resulted in a 2-fold increase in chlorophyll a and c and a 1.6- to 2.4-fold increase in both peridinin and total carotenoid concentrations. Cells grown in green light contained 22 to 32% more peridinin per cell and exhibited 10 to 16% higher peridinin to chlorophyll a ratios than cells grown in white light. Growth decreased as a function of irradiance in white, green and red light grown cells but was the same at all blue light irradiances. Maximum growth rates occurred at 8 μM quanta · m?2· s?1 in blue light, while in red and white light maximum growth rates occurred at considerably higher photon flux densities (24 to 32 μM quanta · m?2· s?1). The fastest growth rates occurred in blue and red radiation. White radiation producing maximum growth was only as effective as red and blue light when the photon flux density in either the red or blue portion of the white light spectrum was equivalent to that of a red or of blue light treatment which produced maximum growth rates. These differences in growth and pigmentation indicate that P. mariae-lebouriae responds to the spectral quality under which it is grown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号