首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The otoliths of embryos and young animals of the lizard Podarcis s. sicula were studied by X-ray diffraction and scanning electron microscopy. Two types of crystal that give different X-ray diffraction patterns were found in the membranous labyrinth of Podarcis. The crystals consist of calcite or aragonite and are easily distinguished by scanning electron microscopy because of their different morphology. The two calcium carbonate crystal forms are not mixed at random but are present in the embryo from the very beginning in specific sites. The endolymphatic sac contains aragonite crystals while the saccule contains calcite crystals adjacent to the wall, in addition to a preponderance of aragonite crystals. The utricle and lagena contain only calcite crystals. The presence of two crystal forms of calcium carbonate in the membranous labyrinth are discussed in terms of differing genetic and functional significance.  相似文献   

2.
The tectorial structures of the inner ear of the proteid salamander Proteus anguinus were studied with transmission and scanning electron microscopy in order to analyze the ultrastructure of the otoconial membranes and otoconial masses of the maculae and the tectorial membrane of the papilla amphibiorum. Both otoconial and tectorial membranes consist of two parts: (1) a compact part and (2) a fibrillar part that joins the membrane with the sensory epithelium. Masses of otoconia occupy the lumina above these membranes. There are two types of calcium carbonate crystals in the otoconial masses within the inner ear of Proteus anguinus. The relatively small otoconial mass of the utricular macula occupies an area no greater than the diameter of the sensory epithelium, and it is composed of calcite crystals. On the other hand, the enormous otoconial masses of the saccular macula and the lagenar macula are composed of aragonite crystals. In the sacculus and lagena, globular structures 2–9 m?m in diameter were discovered on the lower surfaces of the otoconial masses above the sensory epithelia. These globules show a progression from smooth-surfaced, small globules to large globules with spongelike, rough surfaces. It is hypothesized that these globules are precursors of the aragonite crystals and that calcite crystals develop similarly in the utriculus. The presence of globular precursors in adult animals suggests that the formation of new crystals in the otoconial membranes of the sacculus and lagena of Proteus is a continuous, ongoing process.  相似文献   

3.
A daily rhythm of microbial processes, in terms of sub-mm order lamination, was identified for a microbe-rich aragonite travertine formed at a low-flow site of the Nagano-yu Hot Spring in Southwestern Japan. Continuous observation and sampling clearly showed that the lamination consisted of diurnal microbe-rich layers (M-layers) and nocturnal crystalline layers (C-layers). The M-layers originated from biofilm formed by growth and upward migration of filamentous cyanobacteria related to Microcoleus sp., which can rapidly glide and secrete extracellular polymeric substances (EPS). During the daytime, cyanobacterial biofilm development inhibited aragonite precipitation on the travertine surface due to the calcium-binding ability of EPS. After sunset, aragonite precipitation started on the surface where aerobic heterotrophic bacteria decomposed EPS, which induced precipitation of micritic crystals. This early stage of C-layer formation was followed by abiotic precipitation of fan-shaped aragonite aggregates. Despite their major role in lamina formation, the cyanobacteria were readily degraded within 6–10 days after embedding, and the remaining open spaces in the M-layers were sparsely filled with crystal clots. These lamina-forming processes were different from those observed in a high-flow site where the travertine has a dense texture of aragonite crystals. The microbial travertine at Nagano-yu is similar to some Precambrian stromatolites in terms of in situ mineral precipitation, regular sub-mm order lamination, and arrangement of filamentous microbes; therefore, the lamination of these stromatolites possibly occur with a daily rhythm. The microbial processes demonstrated in this study may revise the interpretation of ancient stromatolite formation.  相似文献   

4.
Scanning electron microscopy, field studies using dyes which become incorporated into the skeleton of living corals as time markers, and petrographic and mineralogic techniques were used to describe the diel pattern of calcium carbonate accretion in the extending axial corallite ofAcropora cervicornis. The axial corallite extends by the formation of randomly oriented fusiform crystals at the distal tip of the branch. Morphological and mineralogical characteristics suggest that these might be calcite crystals. They form a framework upon which needle-like aragonite crystals (initially small tufts) begin to grow. As the needles elongate, groups of them form well defined bundles, fasciculi, which compose the primary skeletal elements. There is a diel pattern in the deposition of the skeleton. At night (1800–0600 hours) the distal spines are pointed and composed primarily of fusiform crystals. During the day (0600–1800 hours) mineral accretion occurs on all surfaces of the skeleton, apparently by epitaxial growth on the aragonite needles of the fasciculi.  相似文献   

5.
The evidence of the water erosion on Mars is particularly interesting since present climatic conditions are such that liquid water cannot exist at the surface. But, if water was present on the planet in the past, there may have been life, too. Since the discovery of carbonates on Mars also may have very important implications on the possibility that life developed there, we are studying minerals that can have biotic or abiotic origin: calcite (CaCO3) and aragonite, a metastable state of calcite. We have analysed biomineral aragonite, in the form of recent sea shells, as well as crystals of mineral aragonite. Infrared spectroscopy in the 2–25 μm wavelength range reveals that, after thermal processing, the biotic samples have a different spectral behaviour from the abiotic ones. As a result, it is possible to distinguish abiotic mineral aragonite from aragonite of recent biological origin. Obviously, if life existed in the past on the Red Planet, we could expect to find “ancient” biotic carbonates, which should therefore be investigated, in order to search for a way of discriminating them from abiotic minerals. For this reason, at the beginning we have considered samples of crushed fossil shells of aragonite composition. Afterwards, in order to take into account that fossilization processes almost always produce a transformation of metastable form (aragonite) into more stable form (calcite), we also studied samples of mineral calcite and different types of fossils completely transformed into calcite. All these biotic fossil samples show the same spectral behaviour as the fresh biotic material after thermal annealing at 485°C. Instead, the calcite behaves like abiotic aragonite. Furthermore, it is known that seashells and other biominerals are formed through an intimate association of inorganic materials with organic macromolecules. The macromolecules control the nucleation, structure, morphology, crystal orientation and spatial confinement of the inorganic phase: this differentiates biominerals from minerals. Analysing the aragonite or calcite fossils with a Scanning Electron Microscope, we found that the fossilization process did not modify the structure of the biominerals which maintain their microscopic characteristics. Looking at the morphology of fossil biominerals, it is evident that the crystals are arranged in complex architectures compared with the compact structure of the mineral crystals. In conclusion, the properties and structure of the biominerals are different from those of the minerals. The rapid increase of the crystalline structure developed under biotic conditions makes these minerals less resistant to thermal treatments, compared with samples of abiotic origin. This result holds both for recent shells as well as all fossil samples. The spectroscopic behaviour of all analysed calcium carbonates of biotic origin is different from that of the abiotic one. Therefore, the infrared spectroscopy is a valid technique to discern the origin of the samples and a powerful tool for analysing in-situ and “sample-return” Mars missions specimens. Also Optical and Scanning Electron Microscopy can be useful to support this type of studies. *Presented at: National Workshop on Astrobiology: Search for Life in the Solar System, Capri, Italy, 26 to 28 October, 2005  相似文献   

6.
Morphology of carbonate crystals grown on the surface of artificial cell membranes was controlled by changing the interfacial chemistry. For octadecyltriethoxysilane (OTE) films with terminal methyl groups interacting little with an aqueous calcium carbonate solution, calcite (104) crystals were formed. Polymerized pentacosadiynoic acid (PDA) films with terminal carboxylic acid groups induced deposition of calcite (012) crystals aligned along with each other within a polymer domain. On the other hand, stearyl alcohol (StOH) films with terminal hydroxyl groups induced deposition of aragonite crystals. When PDA was mixed with StOH, the 8∶1 PDA∶StOH (molar ratio) film produced dominating calcite (012) crystals without any crystal alignment, and the 4∶1 mixture film produced minor calcite (012) crystals and major aragonite crystals. For the 2∶1, 1∶1, 1∶2, and 1∶4 mixture films, aragonite crystals were dominating. Hence, it is found that the chemical composition at the interface plays a very important role in controlling the morphology of deposited carbonate crystals.  相似文献   

7.
Two crystal forms of calcium carbonate were observed: calcite (utricle) and aragonite (saccule, lagena, endolymphatic sac). The first step in otolith formation is the appearance of organic structures in the macula. The subsequent step is characterized by fast growing primitive crystals with a prismatic habitus that successively transform into adult or mature crystals. With the metamorphosis, the aragonite crystals of the endolymphatic organ show clear signs of erosion that can be related to a process of CaCO3 mobilization from such deposits.  相似文献   

8.
The squeezing hypothesis and the organic frameworks preformation hypothesis propose two different mechanisms to explain the interaction between organic frameworks and crystals during biomineralization of the prismatic layer of the mollusk shell. In this study, we began to study Hyriopsis cumingii shell formation and discover that this species seemed to follow the squeezing hypothesis. During the formation of the aragonite prismatic layer in the freshwater bivalve H. cumingii, we found that crystal growth was involved in controlling initiation of formation of the interprismatic organic membranes. First, newly formed crystals were embedded in the periostracum. Next, the interprismatic organic membranes of the prismatic layer were produced via squeezing between neighboring crystals. The organic matrix secreted by the mantle continuously self‐assembled into the interprismatic organic membranes as the crystals grew. In the mature stage, the interprismatic organic membranes were shaped by crystal growth. These findings provide evidence to support the squeezing hypothesis and add to the existing knowledge about interactions that occur at the organic–inorganic interfaces during mollusk shell biomineralization.  相似文献   

9.
New empirical and quantitative data in the study of calcium carbonate biomineralization and an expanded coralline psbA framework for phylomineralogy are provided for crustose coralline red algae. Scanning electron microscopy (SEM) and energy dispersive spectrometry (SEM‐EDS) pinpointed the exact location of calcium carbonate crystals within overgrown reproductive conceptacles in rhodolith‐forming Lithothamnion species from the Gulf of Mexico and Pacific Panama. SEM‐EDS and X‐ray diffraction (XRD) analysis confirmed the elemental composition of these calcium carbonate crystals to be aragonite. After spore release, reproductive conceptacles apparently became overgrown by new vegetative growth, a strategy that may aid in sealing the empty conceptacle chamber, hence influencing the chemistry of the microenvironment and in turn promoting aragonite crystal growth. The possible relevance of various types of calcium carbonate polymorphs present in the complex internal structure and skeleton of crustose corallines is discussed. This is the first study to link SEM, SEM‐EDS, XRD, Microtomography and X‐ray microscopy data of aragonite infill in coralline algae with phylomineralogy. The study contributes to the growing body of literature characterizing and speculating about how the relative abundances of carbonate biominerals in corallines may vary in response to changes in atmospheric pCO2, ocean acidification, and global warming.  相似文献   

10.
The balance organs of the inner ear of vertebrates, found as single, large growths of aragonite ('otoliths') in fish and small clumped masses ('otoconia') of either aragonite (amphibians) or calcite (mammals), have long been regarded as polycrystalline and single crystals respectively. The use of ultra-high resolution electron microscopy and electron diffraction to study comparatively crushed samples of these biominerals and samples of geological calcium carbonates, as examples of pure inorganic crystals, reveals that the biological structures are composed of microcrystals joined together by organic matrices to form composite crystals. Such structures either grow to a finite, controlled size (otoconia) or have daily growth patterns (otoliths). Mechanisms of growth are proposed to link these seemingly different patterns varying only in the number of nucleation sites and the degree of biological as against chemical control over the growth.  相似文献   

11.
The ultrastructure of 4 species of the calcareous, siphonaceous alga Halimeda (H. cylindracea Decaisne, H. discoidea Decaisne, H. macroloba Decaisne and H. tuna (Ellis & Solander) Lamour) has been studied, and the observed changes during growth and development are related to changes in the degree of calcification. A distinct gradient in the types and quantities of cell organelles exists in a growing apical filament. As these filaments grow, branch, and eventually develop into a mature segment, changes in the organization of organelles such as mitochondria and chloroplasts are observed. Calcification begins when the chloroplasts reach structural maturity and when the peripheral utricles adhere (fuse). This adhesion of the peripheral utricles isolates the intercellular space (ICS) in which calcification occurs from the external seawater. Calcification begins in the outermost (pilose) cell wall layer of the walls facing into the ICS. The cell walls at the thallus exterior undergo extensive changes after utricular fusion; the pilose layer is lost, the cuticles of adjacent utricles fuse forming a ridge at their junction, and multiple cuticles are formed. The aragonite (CaCO3) crystals which are initially precipitated within the pilose wall layer, rapidly increase in size and number, eventually filling much of the ICS. Only the initial nucleation of aragonite is associated with the pilose wall layer, the later precipitation of aragonite is totally independent of the pilose layer. In older segments secondary deposition of CaCO3 also occurs around existing aragonite needles.  相似文献   

12.
The calcareous green algaHalimeda can be a substantial contributor to aragonite sediment in reef ecosystems. In contrast to coral aragonite, little is known about the trace and minor element composition ofHalimeda aragonite, so it is difficult to test oceanographic hypotheses about factors controlling its past growth. We investigated adapting trace element cleaning protocols for modern and HoloceneHalimeda aragonite, modern and HoloceneHalimeda trace and minor element compositions, and the potential utility ofHalimeda aragonite for paleoceanographic investigations. We successfully adapted and applied sample treatment protocols developed for measuring trace elements in coral aragonite (generally less than 500 y old) toHalimeda aragonite (modern to approximately 5000 y old in this study). ModernHalimeda aragonite from John Brewer Reef in the Central GBR had mean Cd/Ca ratios of 5.19 ± 1.68 nmol/mol forHalimeda micronesica and 2.35 ± 0.38 nmol/mol for three closely related species important in bioherm accumulationHalimeda copiosa, Halimeda hederacea, andHalimeda opuntia. Mn/Ca ratios, with means from 89–239 nmol/mol for these four species, showed both intra-and inter-specific variability. Sr/Ca ratios (10.9 ± O.1 mmol/mol) and Mg/Ca ratios (1.35 ± 0.26 mmol/mol) were similar for all samples. HoloceneHalimeda aragonite samples from cores of two bioherms in the northern GBR seemed well preserved on the basis of mineralogy and Sr/Ca and Mg/Ca ratios similar to those in modernHalimeda aragonite. Cd/Ca ratios (overall mean 0.96 ± 0.15 nmol/mol) were lower than those measured in the modernHalimeda from the central GBR location. However, Mn/Ca ratios in both cores were substantially higher than in modernHalimeda aragonite. While it may be possible to extract paleoceanographic information fromHalimeda aragonite, substantial care is needed to evaluate and avoid the effects of post-depositional alteration.  相似文献   

13.
Summary Scanning electron microscopy and serial petrographic thin sections were used to investigate skeletal elongation and mineralization in the perforate coral, Acropora cervicornis. The axial corallite extends by the formation of randomly oriented fusiform crystals which are deposited on its distal edge. Aragonitic needle-like crystals grow in random directions from the surface of these fusiform crystals. Only those needle-like crystals growing toward the calicoblastic epithelium (i.e. crystals whose growth axis is perpendicular to the plane of the calicoblastic cell membrane) continue to elongate. Groups of these growing crystals join to form well-defined fasciculi which make up the primary skeletal elements comprising the septotheca. The resulting skeleton is highly porous with all surfaces covered by the continuous calicoblastic epithelium. This cell layer is separated by thin mesoglea from the flagellated gastrodermis which lines the highly ramified coelenteron. Porosity and permeability of the skeleton decrease with distance from the tip. Density correspondingly increases due to the addition of aragonite to the fasciculi whose boundaries become less distinct as channels fill with calcium carbonate.  相似文献   

14.
Morphological evidence indicates that the endolymphatic sac of anuran amphibians is involved in the morphogenesis of most statoconia (aragonite crystals). The cells frequently show the aspect of an intense secretory activity, their cytoplasm being totally occupied by a number of vesicles the contents of which might be expelled into the lumen forming the organic—or at times mineral—components of statoconia. Moreover, evidence is presented that another function of the endolymphatic sac might be involvement in a resorptive mechanism for endolymph and for CaCO3 mobilization from aragonite crystals. In fact, these show clear signs of erosion, consistent with a role as a labile calcium deposit played by the calcareous formations of the endolymphatic sac.  相似文献   

15.
Scanning electron microscopy and X-ray dispersive energy microanalysis were used to investigate the formation of carbonate crystals by Deleya halophila. The formation of calcium carbonate crystals (polymorphous aragonite) by D. halophila is a sequential process that commences with a nucleus formed by the aggregation of a few calcified bacterial cells and the subsequent accumulation of more calcified cells and carbonate, which acts to weld the bacteria together. The process leads to the formation of spherical bioliths measuring approximately 50 μm in diameter. The mechanism of carbonate precipitation by D. halophila under our working conditions represents a process of induced biomineralization.  相似文献   

16.
Vaterite otoliths were sampled from two reared populations (Celtic and Clyde Seas) of juvenile herring Clupea harengus. The crystallography, elemental composition and morphometry were analysed and compared with those of normal aragonite otoliths. The incidence of vaterite otoliths in the juveniles sampled (n = 601) ranged from 7·8% in the Clyde population to 13·9% in the Celtic Sea population, and was 5·5% in the small sample (n = 36) of wild adults examined. In all but one case fish had only one vaterite otolith; the corresponding otolith of the pair was completely aragonite. Although the majority of the juveniles sampled showed craniofacial deformities, there was no link between the skull or jaw malformation and the incidence of vaterite otoliths. All vaterite otoliths had an aragonite inner area, and vaterite deposition began sometime after the age of 90 days. The vaterite otoliths were larger and lighter than their corresponding aragonite partners, and were less dense as a consequence of the vaterite crystal structure. The vaterite areas of the otoliths were depleted in Sr, Na and K. Concentrations of Mn were higher in the vaterite areas. The transition between the aragonite inner areas and the vaterite areas was sharply delineated. Within a small spatial scale (20 μm3) in the vaterite areas, however, there was co‐precipitation of both vaterite and aragonite. The composition of the aragonite cores in the vaterite otoliths was the same as in the cores of the normal aragonite otoliths indicating that the composition of the aragonite cores did not seed the shift to vaterite. Vaterite is less dense than aragonite, yet the concentrations of Ca analysed with wavelength‐dispersive spectrometry (WDS) were the same between the two polymorphs, indicating that Ca concentrations measured with WDS are not a good indicator of hypermineralized zones with high mineral density. The asymmetry in density and size of the otoliths may cause disruptions of hearing and pressure sensitivity for individual fish with one vaterite otolith, however, the presence of vaterite otoliths did not seem to affect the growth of these laboratory reared juvenile herring.  相似文献   

17.
The initial growth of the nacreous layer is crucial for comprehending the formation of nacreous aragonite. A flat pearl method in the presence of the inner-shell film was conducted to evaluate the role of matrix proteins in the initial stages of nacre biomineralization in vivo. We examined the crystals deposited on a substrate and the expression patterns of the matrix proteins in the mantle facing the substrate. In this study, the aragonite crystals nucleated on the surface at 5 days in the inner-shell film system. In the film-free system, the calcite crystals nucleated at 5 days, a new organic film covered the calcite, and the aragonite nucleated at 10 days. This meant that the nacre lamellae appeared in the inner-shell film system 5 days earlier than that in the film-free system, timing that was consistent with the maximum level of matrix proteins during the first 20 days. In addition, matrix proteins (Nacrein, MSI60, N19, N16 and Pif80) had similar expression patterns in controlling the sequential morphologies of the nacre growth in the inner-film system, while these proteins in the film-free system also had similar patterns of expression. These results suggest that matrix proteins regulate aragonite nucleation and growth with the inner-shell film in vivo.  相似文献   

18.
Aragonitic microbialites, characterized by a reticulate fabric, were discovered beneath lacustrine microbial mats on the atoll of Kiritimati, Republic of Kiribati, Central Pacific. The microbial mats, with cyanobacteria as major primary producers, grow in evaporated seawater modified by calcium carbonate and gypsum precipitation and calcium influx via surface and/or groundwaters. Despite the high aragonite supersaturation and a high photosynthetic activity, only minor aragonite precipitates are observed in the top parts of the microbial mats. Instead, major aragonite precipitation takes place in lower mat parts at the transition to the anoxic zone. The prokaryotic community shows a high number of phylotypes closely related to halotolerant taxa and/or taxa with preference to oligotrophic habitats. Soil- and plant- inhabiting bacteria underline a potential surface or subsurface influx from terrestrial areas, while chitinase-producing representatives coincide with the occurrence of insect remains in the mats. Strikingly, many of the clones have their closest relatives in microorganisms either involved in methane production or consumption of methane or methyl compounds. Methanogens, represented by the methylotrophic genus Methanohalophilus, appear to be one of the dominant organisms in anaerobic mat parts. All this points to a significant role of methane and methyl components in the carbon cycle of the mats. Nonetheless, thin sections and physicochemical gradients through the mats, as well as the 12C-depleted carbon isotope signatures of carbonates indicate that spherulitic components of the microbialites initiate in the photosynthesis-dominated orange mat top layer, and further grow in the green and purple layer below. Therefore, these spherulites are considered as product of an extraordinary high photosynthesis effect simultaneous to a high inhibition by pristine exopolymers. Then, successive heterotrophic bacterial activity leads to a condensation of the exopolymer framework, and finally to the formation of crevice-like zones of partly degraded exopolymers. Here initiation of horizontal aragonite layers and vertical aragonite sheets of the microbialite occurs, which are considered as a product of high photosynthesis at decreasing degree of inhibition. Finally, at low supersaturation and almost lack of inhibition, syntaxial growth of aragonite crystals at lamellae surfaces leads to thin fibrous aragonite veneers. While sulfate reduction, methylotrophy, methanogenesis and ammonification play an important role in element cycling of the mat, there is currently no evidence for a crucial role of them in CaCO3 precipitation. Instead, photosynthesis and exopolymer degradation sufficiently explain the observed pattern and fabric of microbialite formation.  相似文献   

19.
The mixture of EDTA-soluble proteins found in abalone nacre are known to cause the nucleation and growth of aragonite on calcite seed crystals in supersaturated solutions of calcium carbonate. Past atomic force microscope studies of the interaction of these proteins with calcite crystals did not observe this transition because no information about the crystal polymorph on the surface was obtained. Here we have used the atomic force microscope to directly observe changes in the atomic lattice on a calcite seed crystal after the introduction of abalone shell proteins. The observed changes are consistent with a transition to (001) aragonite growth on a (1014) calcite surface.  相似文献   

20.
This study indicates that eggs containing calcium carbonate crystals occur in at least 36 of the 65 known families of the land snails (class Gastropoda: order Stylommatophora). Eggs from 22 of these families were available for examination. The x-ray diffraction data, available for the first time for 21 of these families, shows that these egg shells are all made of calcite only, or of a combination of calcite with smaller amounts of aragonite. All of the snail (body) shells examined were made of aragonite only. This is the first ultrastructural investigation of these egg shells, and it indicates that the eggs exhibit enough structural diversity to allow identification of parental animals to genus, and often to species level solely on the basis of egg shell ultrastructure. All of the calcified eggs may be divided into two groups: (1) partly calcified, with discrete crystals of CaCo3 dispersed in the jelly layer, and (2) heavily calcified, with a hard, brittle egg shell made of fused crystals of CaCO3 much like an avian egg. Both types of calcified eggs occur in oviparous as well as in ovoviviparous snails. Because of the wide distribution of calcified eggs in the Stylommatophora, and because of the occurrence of heavily calcified eggs in ancient families such as Partulidae, Endodontidae, and Zonitidae, the calcified egg is viewed as a primitive land snail trait associated with terrestrial adaptation. The function of the calcified egg shell, in addition to mechanical support of egg contents, is to supply the developing embryo with enough calcium to form the embryonic shell by the time of hatching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号