首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • Mixed cross and self‐pollen load on the stigma (mixed pollination) of species with late‐acting self‐incompatibility system (LSI) can lead to self‐fertilized seed production. This “cryptic self‐fertility” may allow selfed seedling development in species otherwise largely self‐sterile. Our aims were to check if mixed pollinations would lead to fruit set in LSI Adenocalymma peregrinum, and test for evidence of early‐acting inbreeding depression in putative selfed seeds from mixed pollinations.
  • Experimental pollinations were carried out in a natural population. Fruit and seed set from self‐, cross and mixed pollinations were analysed. Further germination tests were carried out for the seeds obtained from treatments.
  • Our results confirm self‐incompatibility, and fruit set from cross‐pollinations was three‐fold that from mixed pollinations. This low fruit set in mixed pollinations is most likely due to a greater number of self‐ than cross‐fertilized ovules, which promotes LSI action and pistil abortion. Likewise, higher percentage of empty seeds in surviving fruits from mixed pollinations compared with cross‐pollinations is probably due to ovule discounting caused by self‐fertilization. Moreover, germinability of seeds with developed embryos was lower in fruits from mixed than from cross‐pollinations, and the non‐viable seeds from mixed pollinations showed one‐third of the mass of those from cross‐pollinations.
  • The great number of empty seeds, lower germinability, lower mass of non‐viable seeds, and higher variation in seed mass distribution in mixed pollinations, strongly suggests early‐acing inbreeding depression in putative selfed seeds. In this sense, LSI and inbreeding depression acting together probably constrain self‐fertilized seedling establishment in A. peregrinum.
  相似文献   

2.
Most studies of the effects of inbreeding focus on vegetative vigor and reproductive output through the female (fruit and seed) function. This study not only examines the effects of inbreeding on the female function but it also examines the effects of inbreeding on pollen performance both in vitro and in vivo. This study used Cucurbita texana, a wild gourd, and was performed under field conditions. In vivo performance was assessed by placing equal amounts of pollen from either the inbred or outcrossed plants onto a stigma together with pollen from a tester line. As with other studies, we found that outcrossed plants had greater reproductive output (male flowers and fruits) than plants produced from self pollinations. Unlike most studies of inbreeding depression, which mostly ignore the male function of plants, we also found that the pollen produced by outcrossed plants had faster pollen tube growth in vitro than the pollen produced on selfed plants. Moreover, pollen from selfed plants sired significantly fewer seeds than pollen from outcrossed plants under conditions of pollen competition (i.e. the number of pollen grains deposited onto the stigmas was larger than the number of available ovules). These findings indicate that inbreeding affects the performance of the resulting sporophytic generation and the microgametophytes they produce.  相似文献   

3.
Summary I examined the effects of pollen loads containing pollen from one, three and five donors on fruit production and fruit quality in Campsis radicans. Number of pollen donors had no significant effect on % fruit production, seed number, seed weight or seed germination. In singledonor pollinations the identity of the donor did have a strong effect on the above parameters. Furthermore, the best single donor sired fruits with more seeds and heavier seeds than any mixture containing this donor. This pattern indicates interference of pollens or preemption of some ovules by the inferior pollen. In Campsis, therefore, the number of pollen donors contributing to a pollen load is less important than the identity of these donors in determining fruit production and fruit quality. Seeds from fruits resulting from mixed pollination were slightly more variable than seeds from fruits resulting from single-donor pollinations.  相似文献   

4.
Fewer than 25% of the ovules of Echium vulgare in the field develop into viable seeds, even with no pollen limitation. The loss of ovules could enhance the fitness of the maternal parent, if less fit embryos are selectively aborted. Two pollination experiments were performed to examine the selectivity of maternal parents on self-pollen and different cross-pollen sources. Pollinated with one pollen genotype per flower, self-pollen was, on average, as successful in siring seeds as cross-pollen. However, the relative success of self-pollen compared to outcross-pollen differed significantly among the maternal parents. These results suggest that, under certain conditions, selfing can produce a greater number of seeds than cross-pollination. Pollen donors differed significantly in outcrossing success. The plants that were more successful in selfing were also more successful pollen donors in outcross-pollinations. No significant interaction between maternal parent and paternal genotype was found. Pollinations with a pollen mixture produced selfed and outcrossed seeds in the same ratios as the single-donor experiment. Overall, only slight differences were found between the single- and mixed-donor experiments. Pollen tube growth did not show a significant correlation with the success of the parental genotypes in the mixed-donor experiment, indicating that pollen tube growth is not the determining factor controlling the paternity of the seeds. These results are discussed with reference to possible mediating mechanisms.  相似文献   

5.
BACKGROUND AND AIMS: Late-acting self-incompatibility (LSI), in which selfed flowers fail to form fruits despite apparently successful growth of the pollen tubes to the ovules, is a contentious and still poorly understood phenomenon. Some studies have indicated pollen tube-pistil interactions, and major gene control. Others favour an early acting inbreeding depression explanation. METHODS: Experimental pollinations, including selfs (in a subsample of which the style was cut before pollen tubes reached the ovary), chase self/cross-pollinations, crosses, and mixed self/cross-pollinations were used to study floral/pistil longevity and effect on fruit set and seed yield in two Ceiba species known to have LSI. RESULTS: Self-pollinations, including those with a cut style, had extended floral longevity compared with unpollinated flowers. Chase pollinations in which cross-pollen was applied up to 3 h after selfing set fruits, but with reduced seed set compared with crosses. Those with cross-pollen applied at 4 and 8 h after self-pollination all failed to set fruits. Flowers subjected to 1 : 1 and 2 : 1 self/cross-pollinations all produced fruits but again with a significantly lower seed set compared with crosses. CONCLUSIONS: Extended floral longevity initiated with self-pollen tubes growing in the style indicates some kind of pollen tube-pistil interaction. Fruit set only in chase pollinations up to 3 h implies that self-pollen tubes either grow more slowly in the style or penetrate ovules more slowly on arrival at the ovary compared with cross-tubes. This agrees with previous observations indicating that the incidence of penetrated ovules is initially lower in selfed compared with crossed pistils. However, the low seed yield from mixed pollinations indicates that self- and cross-pollen tubes arrive at the ovary and penetrate ovules more or less simultaneously. Possible explanations for these discordant results are discussed.  相似文献   

6.
Like many angiosperms, Crinum erubescens is partially self-compatible, producing fewer seeds upon selfing than after outcrossing. In this paper we test the relative magnitude of the prefertilization and postfertilization effects of self-incompatibility, inbreeding depression, or both in a natural population of this hermaphroditic tropical herb. We characterize prefertilization effects by examining pollen tube growth, while postfertilization effects are characterized by examination of embryo abortion and seed maturation. Statistical methods are developed to test the magnitude of these effects from one life-cycle stage to the next. We find that although pollen performance in selfed flowers is lower than that in outcrossed flowers, pollen performance is low overall. Postfertilization effects attributable to inbreeding depression account for a larger proportion of the reduction in fecundity in selfed compared to outcrossed flowers. Among naturally pollinated plants, despite ample pollen deposition, the numbers of fruits and seeds set are intermediate to selfed and outcrossed treatments.  相似文献   

7.
Inbreeding may influence the intensity of sibling competition by altering the number of offspring produced or by changing plant morphology in ways that influence seed dispersion patterns. To test this possibility, effects of inbreeding on seed production and on traits that influence progeny density were measured using experimental pollinations of flowers of Cakile edentula var. lacustris. Different flowers on a plant were either hand pollinated with self pollen (with and without emasculation) or foreign pollen, or they were allowed to be pollinated naturally. Selfed flowers matured significantly fewer viable seeds than outcrossed flowers (10.3% less seed maturation with inbreeding depression of 19.2%), due in large part to a greater percentage of proximal seed abortions and lower germination success. Plants grown from selfed seeds tended to have lower seed production (37 fewer seeds on average, with inbreeding depression of 16.2%), caused in part by an increase in the percentage of fruits with proximal seed abortions, although this effect was not significant. Inbreeding depression in total fitness was 29.0%, which corresponds to a difference of 46 seeds per pollinated ovule. Selfing rate estimates were usually intermediate to high, indicating that inbreeding effects observed in this study would be present in naturally pollinated progeny. Although the influence of inbreeding directly on dispersal was negligible, the predicted reduction in sibling competition caused by reduced seed production resulted in an estimate of inbreeding depression of 17.5%, which is 11.5% lower than that measured under uniform conditions. Consequently, inbreeding depression estimated under natural dispersion patterns may be lower than that estimated under uniform conditions since seeds from self- and cross-pollination may not experience the same competitive environment in the field. Inbreeding in the maternal generation, therefore, could influence progeny fitness not only by determining the genetic composition of progeny, but also by influencing the competitive environment in which progeny grow.  相似文献   

8.
We present evidence that extreme seed size variation in fruits of Crinum erubescens (range: 0.1 to 66.5 g per seed) occurs when mating pairs are inbred, either from selfing or biparental inbreeding. Several relatively uniform seeds of intermediate size are produced when pollen from several pollen donors is applied simultaneously to a flower. Selfed fruits and some fruits pollinated with a single pollen donor produce both large and small seeds, although selfed fruits produce fewer seeds than outcrossed fruit. These results are contrary to the hypothesis that variation in seed size is attributable to either pollen competition or differential allocation of maternal resource to seeds of different genotypes.  相似文献   

9.
The interaction of mating system and nutrient limitation in determining seed production was investigated in the annual, self-compatible plant Lupinus texensis (Fabaceae). Abortion of developing seeds is a major factor limiting seed production in natural populations (17-28%). Selfing rates are generally low (0.02-0.21), suggesting that deleterious recessive genes may be maintained at significant levels in natural populations. The average inbreeding depression associated with seed development is δ = 0.24. Nutrient limitation reduced seed output across experimental treatments by a factor of 0.22 through decreased production of inflorescences, flowers, and ovules, and by a factor of 0.29 through increased abortion of fruits and of seeds within fruits. Competition for resources among fruits increased the frequency of seed abortion. Moreover, a greater proportion of selfed seeds were aborted as the overall abortion rate increased. Estimates of genetic load may therefore only be appropriate if undertaken in the field, and inbreeding depression may vary from year to year simply due to changes in environmental conditions rather than to underlying genetic changes in populations. The existence of inbreeding depression and the high frequency of abortions suggest that selective abortion favoring outcrossed progeny occurs in natural populations of L. texensis.  相似文献   

10.
M. Ramsey 《Oecologia》1995,103(1):101-108
The extent, frequency and causes of pollenlimited seed production were examined in partially selffertile populations of Blandfordia grandiflora for 2 years. Percentage seed set of open-pollinated plants (50–57%) did not differ within or between years, and was about 19% less than experimentally cross-pollinated plants (70–75%). Floral visits by honeybees did not differ through the flowering season and the number of pollen grains deposited on stigmas within 12 h of flowers opening exceeded the number of ovules per flower, indicating that the quality rather than the quantity of pollination limited seed set. Pollen limitation was caused by concurrent self- and cross-pollination and the subsequent abortion of some selfed ovules due to inbreeding depression. Natural seed set (55%) was intermediate between selfed (43%) and crossed (75%) flowers and was not increased when flowers that had been available to pollinators for 24 h were hand cross-pollinated, suggesting that ovules were already fertilized. Similarly, experimental pollination with both cross and self pollen within 24 h of flowers opening did not increase seed set relative to natural seed set, indicating that both cross- and self-fertilizations had occurred. In contrast, when selfing followed crossing by 48 h, or vice versa, seed set did not differ from crossed-only or selfed-only flowers, respectively, indicating that ovules were pre-empted by the first pollination. Collectively, these results indicate that under natural conditions self pollen pre-empts ovules, rendering them unavailable for cross-fertilization. This selfing reduces fecundity by 50%, as estimated from the natural production of cross seeds when selfing was prevented. Consequently, selection should favour floral traits, such as increased stigma-anther separation or protandry, that reduce interference between male and female functions that leads to selfing.  相似文献   

11.
Reciprocal specialization in interspecific interactions, such as plant-pollinator mutualisms, increases the probability that either party can have detrimental effects on the other without the interaction being dissolved. This should be particularly apparent in obligate mutualisms, such as those that exist between yucca and yucca moths. Female moths collect pollen from yucca flowers, oviposit into floral ovaries, and then pollinate those flowers. Yucca moths, which are the sole pollinators of yuccas, impose a cost in the form of seed consumption by the moth larvae. Here we ask whether there also is a genetic cost through selfish moth behavior that may lead to high levels of self fertilization in the yuccas. Historically, it has been assumed that females leave a plant immediately after collecting pollen, but few data are available. Observations of a member of the Tegeticula yuccasella complex on Yucca filamentosa revealed that females remained on the plant and oviposited in 66% of all instances after observed pollen collections, and 51% of all moths were observed to pollinate the same plant as well. Manual cross and self pollinations showed equal development and retention of fruits. Subsequent trials to assess inbreeding depression by measuring seed weight, germination date, growth rate, and plant mass at 5 months revealed significant negative effects on seed weight and germination frequency in selfed progeny arrays. Cumulative inbreeding depression was 0.475, i.e., fitness of selfed seeds was expected to be less than half that of outcrossed seeds. Single and multilocus estimates of outcrossing rates based on allozyme analyses of open-pollinated progeny arrays did not differ from 1.0. The discrepancy between high levels of behavioral self-pollination by the moths and nearly complete outcrossing in mature seeds can be explained through selective foreign pollen use by the females, or, more likely, pollen competition or selective abortion of self-pollinated flowers during early stages of fruit development. Thus, whenever the proportion of pollinated flowers exceeds the proportion that can be matured to ripe fruit based on resource availability, the potential detrimental genetic effects imposed through geitonogamous pollinations can be avoided in the plants. Because self-pollinated flowers have a lower probability of retention, selection should act on female moths to move among plants whenever moth density is high enough to trigger abortion. Received: 18 March 1996 \Accepted: 30 July 1996  相似文献   

12.
Late‐acting (ovarian) self‐incompatibility, characterized by minimal or zero seed production following self‐pollen tube growth to the ovules, is expected to show phylogenetic clustering, but can otherwise be difficult to distinguish from early‐acting inbreeding depression. In Amaryllidaceae, late‐acting self‐incompatibility has been proposed for Narcissus (Narcisseae) and Cyrtanthus (Cyrtantheae). Here, we investigate whether it occurs in the horticulturally important genus Clivia (Haemantheae) and test whether species in this genus experience ovule discounting in wild populations. Seed‐set results following controlled hand pollinations revealed that Clivia miniata and C. gardenii are largely self‐sterile. Self‐ and cross‐pollinated flowers of both species had similar proportions of pollen tubes entering the ovary, and those of C. gardenii also did not differ in the proportions of pollen tubes that penetrated ovules, thus ruling out classical gametophytic self‐incompatibility acting in the style, but not early inbreeding depression. Flowers that received equal mixtures of self‐ and cross‐pollen set fewer seeds than those that received cross‐pollen only, but it was unclear whether this effect was a result of ovule discounting or interactions on the stigma. The prevention of self‐pollination by the emasculation of either single flowers or whole inflorescences in wild populations did not affect seed set, suggesting that ovule discounting is not a major natural limitation on seed production. Flowers typically produce one to three large fleshy seeds from approximately 16 available ovules, even when supplementally hand pollinated, suggesting that fecundity is mostly resource limited. The results of this study suggest that Clivia spp. are largely self‐sterile as a result of either a late‐acting self‐incompatibility system or severe early inbreeding depression, but ovule discounting caused by self‐pollination is not a major constraint on fecundity. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 155–168.  相似文献   

13.
Seed weight varies significantly within and among fruits of wild radish (Raphanus raphanistrum). To determine sources of this variation, we studied fertilization and seed development following controlled pollinations. Within fruits, central ovules were fertilized prior to distal ovules and attained greater seed size. Ninety-seven percent of the variation in mean seed wt per fruit was explained by an analysis of variance incorporating parental effects, pollination date, and the number of seeds per fruit. We document strong maternal effects on the number of ovules per ovary, the number of fertilized ovules per ovary, the number of seeds per fruit, and mean individual seed wt per fruit. Across females, pollen donor had a slight but significant effect on seed wt; no paternal effects on fertilization rate, zygote number, or seed number per fruit were detected. Within females, with one exception, pollen donor had no significant effect on these components of seed development. Stronger maternal main effects may be due to donor x recipient interactions, cytoplasmic factors, the genetic inequity within triploid endosperm, and/or strict maternal control over resource allocation. The large maternal effects relative to paternal effects may limit the rate at which natural selection acts on paternal traits expressed prior to seed maturation.  相似文献   

14.
Greenhouse pollinations among 23 field-collected plants and their progeny revealed a high and variable degree of self-sterility in Epilobium obcordatum. Field-collected plants averaged 5% seed-set when selfed and 43% seed-set in crosses; greenhouse progeny 11% and 49%, respectively. In two of three pollen chase tests, previously or simultaneously applied self-pollen reduced seed-set to that resulting from pure self-pollination. Based on the relative survivorship of self- and outcross embryos, the mean number of lethal equivalents was determined to be 11.0 (range 2.9 to 17.6) in the field-collected plants, and 7.1 (range 0.62 to 21.8) in the greenhouse progeny. Pollinations among 91 individuals showed a significant negative correlation between seed-set and inbreeding coefficients of the resulting zygotes. Intrapopulation crosses yielded significantly fewer seeds than interpopulation crosses. Early embryonic mutational load, in combination with some level of biparental inbreeding, appears to be responsible for the level of self-sterility in natural populations of this species. A pollen dosage test for an interpopulation cross resulted in a maximum seed set of 47% at 16 tetrads. Additional unmeasured characteristics govern the probability of ovules becoming mature seeds.  相似文献   

15.
In Chamaecrista fasciculata, fruit abortion levels are high and seed mass is highly variable, necessary preconditions for differential resource allocation of the female to seed and fruit sired by different males. This study investigated the relative role of pollen donor and seed parent on the allocation of resouces to developing seed and fruit, and assessed the role of genetic relatedness in contributing to any observed paternal effect in C. fasciculata. In addition, pollen donor effects were contrasted to within-seed parent sources of variation in resource allocation due to pollination date and ovule position in the pod. Plants collected from the field were brought to a greenhouse where single-donor crosses were conducted controlling for pollen donor source and interplant distance, a measure of genetic relatedness. Seed mass, number of seed/fruit, fruit maturation time, and fruit abortion rate were measured as indicators of resource allocation to developing seed and fruit. Variation in resource allocation was largely determined by the seed parent. Pollen donor effects were limited to differences between self vs. non-self pollinations, suggesting that inbreeding depression following mating events between related individuals is the source of any variation among pollen donors on differential resource allocation to developing seed and fruit. Once the effect of inbreeding was removed, however, pollination date and ovule position played larger roles than pollen source. Since there was no detectable variation among male pollen donors in their ability to accrue resources from the female seed parent apart from inbreeding effects, it is concluded that the opportunity for postzygotic mate choice is limited in C. fasciculata.  相似文献   

16.
Effects of pre-seed-dispersal processes on offspring vigor were examined in Erythronium grandiflorum using manipulations of the number of pollen donors contributing to the pollen pool and comparisons of means and variances in offspring growth measurements. There were no effects of the number of donors on measures of pollen-tube growth, ovule abortion, seed set, mean seed weight, or seedling germination. Seeds from pollinations with only one donor produced corms that averaged 5% lighter after one season of growth and had lower overall survival after three years compared to corms from pollinations with either three or ten donors. Patterns of within- and among-family variance estimates for the different treatments were consistent with the hypothesis that less-vigorous offspring were eliminated prior to seed dispersal in the multiple-donor treatments. The difference in the growth of offspring from different treatments was apparently not due to pollen competition because pre-zygotic attrition of pollen tubes led to incomplete fertilization of ovules. Results from this study suggest that post-fertilization abortion of less-vigorous progeny, perhaps as a consequence of early-acting inbreeding depression, is responsible for the increase in the average vigor of offspring from multiply-sired fruits.  相似文献   

17.
Density-dependent variation in reproductive success in a terrestrial orchid   总被引:5,自引:0,他引:5  
 Within population variation in plant density can affect reproductive success and breeding systems. We examined such effects in Listera cordata R. Br., a north temperate terrestrial orchid, in a subalpine population in Colorado, USA. Hand pollinations showed that L. cordata was self-compatible as all pollinations produced fruits. Cross-pollinations differed significantly from self-pollinations, and had a higher number of seeds per capsule and higher % of fertilized ovules. Together they could compensate for the transmission advantage of self-pollinations. Average number of flowers per inflorescence was 4.2–4.4 and average fruit set was 20.7–23.7%. By establishing 36 plots with varying plant densities (1, 4, 8 and 16) and emasculating all flowers in target plants of a set of 20 plots, we estimated density effects on fruit and seed production. Plant density had no effect on the amount of reproduction except in reduced seed production of highly dispersed plants. Our results suggest that inbreeding depression may be an important selective factor in L. cordata. Further studies are needed to define its role in the evolution of mating systems in this species. Received February 21, 2000 Accepted December 26, 2000  相似文献   

18.
Fruit set is consistently low in the genus Banksia (Proteaceae). One explanation for low fruit:flower ratios is that excess flowers allow plants to selectively abort inferior progeny thereby increasing the average quality of the seed crop. We examined whether self-pollinated fruits were aborted selectively in a partially self-compatible population of Banksia spinulosa. Inflorescences were divided in half and pollinated with cross pollen on both sides, self pollen on both sides or cross pollen on one side and self pollen on the other. Seed production was reduced significantly by 38% on fully self-pollinated compared to fully cross-pollinated inflorescences, indicating partial self-incompatibility or inbreeding depression. On inflorescences pollinated with both cross and self pollen, selfed seed set was reduced by 63% compared to crossed seed set. On the selfed half of these inflorescences, fewer fruits and seeds were produced, and more fruits had aborted seeds than on randomly selected halves of fully self-pollinated inflorescences. These results suggest that self-fertilized embryos were developed in the absence of outcrossed progeny but were selectively aborted when outcrossed progeny were present on inflorescences. To determine the amount of outcrossing occurring in the study population, outcrossing rates (t) of naturally pollinated plants were examined by electrophoretic assessment of progeny arrays. Values of I did not differ significantly from one, indicating complete outcrossing. High outcrossing, despite the high probability of self pollen receipt under natural conditions, is consistent with the conclusion that selective abortion occurs in B. spinulosa.  相似文献   

19.
Reduction in seed set following self- vs. cross-pollination in flowering plants can result from abortion of selfed offspring owing to inbreeding depression and/or partial self-incompatibility. Previous studies on tristylous Eichhornia paniculata (Pontederiaceae) indicate that reduced seed set following self-pollination generally occurs in the short- (S), but not the long-(L) or mid-styled (M) morphs. To determine whether this pattern results from morph-specific differences in inbreeding depression owing to the sheltering of deleterious alleles at the S locus and/or partial self-incompatibility, we conducted controlled hand-pollinations of the floral morphs and measured seed set and levels of seed abortion. There were no significant differences in fertilization success and seed set following self-, illegitimate, and legitimate pollinations in the L and M morphs. In contrast, in the S morph self-, intramorph and intermorph illegitimate pollinations resulted in significant reduction in seed set in comparison with legitimate pollination. This indicates that the reduced seed set observed in self-pollination is the result of partial incompatibility rather than inbreeding depression. Significantly reduced fertilization success and low levels of ovule abortion in illegitimate pollinations of S plants also supported this conclusion. Reduced fertility in the S morph may have implications for the observed loss of this morph from natural populations and the evolutionary breakdown of tristyly.  相似文献   

20.
Autotetraploids are predicted to have reduced inbreeding depression relative to diploids. However, recent theory and information on genomic changes following autopolyploidy suggest that inbreeding depression may be closer to diploids. In three consecutive years, self and outcross pollinations were conducted on autotetraploid Campanulastrum americanum, seeds were planted into native sites, and biennial offspring were followed through seed production. Inbred individuals had lower germination rates, reduced survival, were smaller, and flowered later, producing fewer fruits with fewer seeds. Inbred offspring had 6% of the cumulative fitness of outcross offspring. Although performance varied substantially among cohorts, inbreeding depression for cumulative fitness was relatively constant, with delta ranging only from 0.92 to 0.95. C. americanum, like many outcrossing species, expressed very high amounts of inbreeding depression. This supports the hypothesis that inbreeding depression of some autotetraploids may be similar to that of diploids. Furthermore, few studies have measured temporal variation in inbreeding depression. Constant inbreeding depression given a sixfold range in cohort performance suggests that inbreeding depression may be relatively robust to environmental variation experienced by natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号