首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Potentially, homing from distant areas can be based on two different principles of navigation: (1) A path-integration mechanism records and integrates an animal's motions during the outward trip; it is independent of location-specific stimuli. (2) Site localization, by contrast, is performed by deducing the animal's position in relation to home from such stimuli. Hence the first mechanism entirely depends on an uninterrupted flow of “outward-journey information”. The second mechanism may but need not be independent of stimuli recorded during the outward journey. Homing of pigeons is evidently based on site localization. Empirical findings do not support the idea that in experiments using passive displacement path integration is involved in addition or alternatively. Also, there is no reason to assume that very young pigeons transitionally, for only few weeks, apply such a method (as has been concluded by Wiltschko & Wiltschko 1982, 1985, etc.). It is shown that very young pigeons require local olfactory signals for initial homeward orientation as do older birds (Fig. 1). They are not generally better at homeward orientation than older inexperienced pigeons and show similar deviations from home and preferences for a particular compass direction (Table 1, Fig. 2). Olfactory signals appear to be gathered, as good as conditions allow, during any stage of a homing experiment. No fundamental difference can be recognized between olfactory “outward-journey information”, “release-site information”, etc. Signals received at different times and sites before release may contribute by varying proportions to the initial-orientation patterns observed under varying circumstances.  相似文献   

2.
Whether pigeons use visual landmarks for orientation from familiar locations has been a subject of debate. By recording the directional choices of both anosmic and control pigeons while exiting from a circular arena we were able to assess the relevance of olfactory and visual cues for orientation from familiar sites. When the birds could see the surroundings, both anosmic and control pigeons were homeward oriented. When the view of the landscape was prevented by screens that surrounded the arena, the control pigeons exited from the arena approximately in the home direction, while the anosmic pigeons' distribution was not different from random. Our data suggest that olfactory and visual cues play a critical, but interchangeable, role for orientation at familiar sites.  相似文献   

3.
Summary 16 releases, centrally symmetrical by pairs and involving distances of displacement from 25 to 172 km, were conducted with homing pigeons pre-treated in different ways: FIL birds were, until few minutes before release, confined to containers ventilated with ambient air that had passed through filters consisting of activated charcoal. NOFIL birds were confined to containers ventilated with unfiltered air, either from departure at the loft onwards (4 experiments) or for at least 4 h at the release site (after transport under FIL conditions; 12 experiments). The olfactory epithelia of XYL birds were locally anaesthetized a few minutes before release, while NOXYL birds were not treated with xylocain. FIL/NOFIL conditions were combined with XYL/NOXYL conditions, resulting in 4 types of experimental treatment.On average, the untreated pigeons (NOFILNOXYL) were best homeward oriented and the double-treated pigeons (FIL-XYL) poorest. More importantly, the effect of olfactory deprivation during initial flight alone (NOFIL-XYL) was small, whereas long-term filtration of environmental air was quite effective even if the pigeons could smell during release time (FIL-NOXYL) (Fig. 5).These findings indicate that pigeons usually need to be exposed to local odorous air for more than only few minutes in order to utilize information extricated from this air for site localization.Additional experiments showed that homeward orientation is also prevented, if the pigeons, although breathing natural air, are ventilated with restricted volumes of fresh air.Our results are discussed with regard to the homing mechanism of pigeons as well as to their methodological consequences.Abbreviations FIL breathing air filtered by charcoal - NOFIL breathing air unfiltered - XYL xylocain applied to pigeons' nostrils - NOXYL no xylocain applied (see p. 140)  相似文献   

4.
The orientation of displaced homing pigeons at the moment of their release was tested using an octagonal orientation cage. Under certain conditions, the cage bearings of old, experienced pigeons show rather good homeward orientation, while the directional choices of young birds are not related to the home direction.  相似文献   

5.
The mechanisms used by homing pigeons (Columba livia) to navigate homeward from distant sites have been well studied, yet the mechanisms underlying navigation within, and mapping of, the local familiar area have been largely neglected. In the local area pigeons pote ntially have access to a powerful navigational aid--a memorized landscape map. Current opinion suggests that landmarks are used only to recognize a familiar start position and that the goalward route is then achieved solely using compass orientation. We used high-resolution global positioning system (GPS) loggers to track homing pigeons as they became progressively familiar with a local homing task. Here, we demonstrate that birds develop highly stereotyped yet individually distinctive routes over the landscape, which remain substantially inefficient. Precise aerial route recapitulation implies close control by localized geocentric cues. Magnetic cues are unlikely to have been used, since recapitulation remains despite magnetic disruption treatment, and olfactory cues would have been positionally unstable under the variable wind conditions, making visual landmarks the most likely cues used.  相似文献   

6.
Summary At four sites in the cardinal directions from the home loft in about 180 km distance, 135 experimental pigeons (EPs) and 171 control pigeons (CPs) were released. The EPs had been made anosmic by bilateral olfactory nerve section. All birds were completely inexperienced in homing.Homeward orientation was clearly established in the CPs of which 19% returned to the loft. The performances of the EPs were significantly worse in (a) initial orientation, (b) vanishing intervals, (c) distribution of recoveries, and (d) homing success (none of them homed).The EPs still showed the loft-specific preferred compass direction (PCD).The recoveries of the EPs are much more widely scattered in direction than those of the rather well homeward oriented CPs, even if the distances from the release site are the same in both groups. It is concluded that the navigational capability rather than the motivation to fly or to return home is affected by olfactory deprivation. It is further concluded that homing of pigeons depends on olfactory stimuli perceived at the remote sites even at distances as large as 180km.In the data of the anosmic pigeons a non-olfactory component of homeward orientation persists which is much more pronounced on the W-E axis than on the N-S axis. This component alone appears to be insufficient for a return to the loft.Earlier results and conclusions that gave rise to some controversy are critically examined.The present as well as earlier findings are discussed with respect to two alternative hypotheses of olfactory navigation, the mosaic hypothesis (favoured by Papi) and the gradient hypothesis (favoured by the author).Abbreviations EP experimental pigeon(s) - CP control pigeon(s) - CLCP cueless transported control pigeon(s) (see p. 210) - PCD preferred compass direction I gratefully acknowledge the possibility to maintain our pigeon loft in a building that belongs to the Zoological Institute (Prof. M. Lindauer) of the University of Würzburg. I thank B. and K. Brendle, E. Thiele, and K. Wielander for the releasing of pigeons and for other technical assistance.  相似文献   

7.
This study compares the initial orientation and homing performance of young inexperienced pigeons following their transportation to near and distant places in total darkness (treatment) and their subsequent release. The birds were housed in two lofts at the Lisbon Zoo. Each loft had its own specific features: the H-loft was exposed to prevailing winds and allowed an unhindered view of the surrounding landscape; the L-loft was protected from the wind and allowed only a partial view of the surroundings. Pigeons used in the release tests were between 6 and 7 weeks old. We found that, in general, the initial orientation of the pigeons was affected by the treatment: following release at near places, there was an increase in the scatter and a decrease the homeward component, suggesting that light-dependent information collected en route was used by young pigeons. The effect of the treatment was only temporary based on the observation that the homing performance was not affected. However, the distance of the release site strongly influenced the homing performances as pigeons appeared to be unable to home when released at locations distant from the loft. Based on the scatter or the homeward component, inter-loft differences were apparent with respect to different median vanishing intervals and the reactions of specific pigeons when subjected to the same treatment (transport in darkness) following release at near and distant places. These findings suggest that light-dependent information collected en route is a component of the young pigeon’s navigational system but that, at the young age of the birds tested here, it is preferentially used in familiar areas. In addition, the importance of the light-dependent information appears to depend upon prior experience obtained in the lofts.  相似文献   

8.
Since birds use the earth's magnetic field for compass orientation when astronomical cues are lacking and it has recently been suggested that the pineal body is part of their magnetic compass, test releases have been performed in overcast conditions with pigeons deprived of the pineal body. On the whole, both experimental and control birds were capable of homeward orientation, though the bearings of experimental were rather more scattered. No differences in homing speed or success were recorded. Thus, the pineal body does not appear to play an important role in the homing of pigeons.  相似文献   

9.
The influence of the Earth's magnetic field on locomotory orientation has been studied in many taxa but is best understood for homing pigeons (Columba livia). Effects of experimentally induced and naturally occurring perturbations in the geomagnetic field suggest that pigeons are sensitive to changes in geomagnetic parameters. However, whether pigeons use the Earth's magnetic field for position determination remains unknown. Here we report an apparent orientation to the intensity gradient of the geomagnetic field observed in pigeons homing from sites in and around a magnetic anomaly. From flight trajectories recorded by GPS-based tracking devices, we noted that many pigeons released at unfamiliar sites initially flew, in some cases up to several kilometres, in directions parallel and/or perpendicular to the bearing of the local intensity field. This behaviour occurred irrespective of the homeward direction and significantly more often than what was expected by random chance. Our study describes a novel behaviour which provides strong evidence that pigeons when homing detect and respond to spatial variation in the Earth's magnetic field--information of potential use for navigation.  相似文献   

10.
Two experiments are described which investigate the orientational consequences of flocking in homing pigeons Columba livia. Previous experiments have shown that homing pigeons placed inside a clear-sided release box for 5 min before release from a familiar site have enhanced ground homing speed compared with those placed in an opaque-sided box. It is assumed that previewing the surrounding landscape allows for faster homing since a bird denied this information must accumulate the knowledge on release. In experiment 1, using the same technique developed in these experiments but releasing the birds in pairs we showed that within familiar areas, homing pigeons can exploit a partner that has acquired more information, allowing them to home more quickly. In experiment 2 we attempted to test three potential strategies which may occur during homing flights. The results do not conclusively distinguish between these three mechanisms but suggest that orientation of the pairs of birds is most likely to have resulted from a compromise of individual tendencies, or from following the best homer, but not from following a ‘governing leader’. The consequence of these mechanisms is discussed.  相似文献   

11.
Brieftauben     
Homing pigeons Homing pigeons are well known for their excellent homing abilities which allow them to return to their lofts from unknown releasing sites more than hundreds of kilometres away. Several orientation mechanisms – sun compass, earth's magnetic field, olfactory cues, visual cues – are known to be involved in homing performance as well as parameters such as motivation and experience. New technology give an insight in their homing behaviour and track preferences and it is shown that homing pigeons physiology and neurobiology seem to be functionally adapted to homing. Pigeons races are still common and it is shown how the pigeon breeder tries to maximize the success of his pigeons.  相似文献   

12.
Several workers have investigated the effect of anosmia on pigeon navigation in different geographical locations because it has been suggested that homing behavior is based on different cues, such as olfactory cues, the Earth's magnetic field or infrasound, and that in the absence of one cue another would be used. In this situation, no cue is universally indispensable, including olfactory ones. In order to extend such observations to a novel biome, we observed the behaviour of 192 young inexperienced birds raised in southeastern Brazil, a tropical area where olfactory tests had never been run before. The birds were released from eight symmetrically distributed sites 17 to 44 km from the loft. Half of these birds (experimentals) had been made temporarily anosmic by washing their olfactory mucosae with 4% solution of ZnSO4 the day before release, while controls were treated with Ringer solution. The results of release tests showed that anosmia totally impaired the navigational performance of experimental birds, which were unable to home from sites at relatively short distances from home (34-44 km) and whose pooled initial bearings produced a (negative) homeward component not significantly different from 0. Homing performance of controls was significantly better, and their pooled vanishing bearings had a significant homeward component, in spite of much scatter in individual releases. We conclude that pigeon homing in the study area depends on olfactory information, even though local environmental conditions in the interior of the State of Sao Paulo, as in several other parts of the world, do not appear to be as favorable as Italy for the development of efficient olfactory navigation.  相似文献   

13.
Summary In an effort to avoid the trauma and other nonolfactory effects produced by surgical sectioning of pigeons' olfactory nerves, and to avoid the interference with breathing produced by nostril plugs, a way of making pigeons anosmic by inserting plastic tubes in their nostrils was developed. A total of 16 experimental releases were conducted from unfamiliar sites to compare the homing behavior of birds wearing a tube in each nostril with controls wearing a tube in only one nostril. In five short-distance releases (less than 25 km), no convincing differences in initial orientation, vanishing intervals, or homing success were observed. In eleven releases from longer distances (more than 76 km), the experimental birds were random in three cases and the controls were random in two. In no case were the differences in the distributions of the bearings of experimental and control birds statistically significant, nor were there ever significant differences in vanishing intervals. However, experimental birds had much poorer homing success from these long-distance releases. It is concluded, in view of the anosmic pigeons' good orientation at distant unfamiliar sites, that olfaction is not necessary for homeward orientation and hence that it cannot be the basis of the birds' navigational map. Poor homing success from long distances is probably a consequence of the physical irritation and interference with breathing unfortunately produced by the nasal tubes.We thank our colleagues, Irene Brown, Timothy Larkin, and André Gobert for their help in conducting the releases. This research was supported by Grant BMS 75 18905 AO2 from the National Science Foundation.  相似文献   

14.
Data are presented which prove that 3-O-methylfluorescein phosphate is a substrate for the K+-dependent phosphatase that is associated with Na+,K+-ATPase. Conditions for the continuous fluorimetric assay of 3-O-methylfluorescein phosphatase are described. Enzyme preparations from three different tissues with widely different specific activities exhibit similar Km values for 3-O-methylfluorescein phosphate. Correlation between Na+,K+-ATPase activity and K+-dependent 3-O-methylfluorescein phosphatase activity is demonstrated in several partially purified enzyme preparations and crude tissue fractions. When the K+-dependent 3-O-methylfluorescein phosphatase of a crude rat-brain homogenate is assayed, the activity is a linear function of the amount of homogenate added to the assay mixture. The equivalent of 10 μg of brain tissue may be assayed under the conditions used. The potential value of this highly sensitive fluorimetric method for the assay of enzyme in small samples of various tissues is suggested.  相似文献   

15.
There is debate over whether homing pigeons, Columba livia, use olfactory information as part of their navigational map. Antagonists of the theory argue that homing deficits noted in anosmic pigeons may be due to a non-specific impairment in general information processing. In Experiment I, we present data from a modest investigation describing the typical navigational deficits that occur following zinc sulphate-mediated anosmia. Our results are consistent with previous experiments that noted impairments in homing performance from unfamiliar locations of anosmic pigeons. Experiment II is a critical experiment that involved a spatial working memory paradigm; this paradigm consisted of testing zinc sulphate-treated birds in a forced-choice alternation task in a T-maze. This experiment allowed us to determine whether anosmic pigeons were impaired in memory performance, a robust measure of general information processing. There were no differences between the last day of training and a subsequent-test day when pigeons received an intranasal injection of zinc sulphate. This experiment suggests that zinc sulphate anosmia does not impair general information processing, supporting the hypothesis that homing pigeons use olfactory cues when homing from unfamiliar locations.  相似文献   

16.
The importance of visual landmarks during homing in pigeons (Columba livia) remains a contentious issue. Three experiments which explore the role of visual landmarks at release sites are reported here. The effects of releasing homing pigeons after a 5-minute period in either a clear or an opaque sided release box were investigated. In the clear sided box pigeons were able to observe local surroundings at a release site, but this view was obstructed in the opaque sided box. In experiment 1 pigeons were released from familiar locations close to home (between 2 and 5.6 km): being unable to view landmarks prior to release significantly slowed homing speeds. In experiment 2 pigeons were released at familiar locations further from home (between 8.4 and 10 km): being unable to view landmarks prior to release did not significantly affect homing speeds. In experiment 3 pigeons were trained to home from distant release sites but were tested at closer, unfamiliar sites located on the likely homing routes used by the pigeons in training. No significant difference in homing speeds were observed when pigeons were released from either the clear or opaque sided box. The significance of these results for understanding the role of visual landmarks within a pigeon's familiar area is discussed.  相似文献   

17.
Summary 1,324 vanishing bearings of individual pigeons, completely inexperienced in homing, were recorded during 100 releases at 36 sites symmetrically distributed around their home loft near Würzburg at distances ranging from 7 to 180 km. Two directional components could be derived from the data: (a) a weak but significant homeward component pointing to the loft site and (b) a more pronounced compass component pointing to the northwest (Fig. 1). With the latter kind of tendency the pigeons clearly demonstrated what earlier had been described as preferred compass direction (PCD).Homeward directedness at the 36 differently situated release sites is negatively correlated with angular divergence between PCD and homeward direction (Fig. 2). Compass preferences derived from different quartets of symmetrically arranged sites were similar. Over a period of 11 years the PCD varied significantly in time but did not change fundamentally (Figs. 3, 4). Interrelations between various parameters of initial-orientation data were investigated by correlation analyses (Table 3).PCDs have not only been found in the Würzburg area but around many other loft sites as well. They are, however, differently pronounced, and in experienced pigeons they are generally weaker than in first-flight birds. Various reasons (partly evident, partly thought possible) for variability of PCDs, and for their absence in some series of experiments, are discussed.As a PCD persists, and even tends to become clearer, after elimination of homeward orientation by olfactory deprivation, it is concluded that it reflects directional tendencies which are independent of the process of site localization. A great deal of what is called release-site biases, i.e., site-specific deviations from the beeline course towards home, can be understood on a PCD basis. The functional background of the PCD is unknown. Hypothetical advantages for the pigeons homing strategy are considered.Abbreviations RSB release-site bias - PCD preferred compass direction  相似文献   

18.
Summary In order to test whether stimuli perceived during passive displacement are important for the subsequent homing, pigeons were transported in an apparatus designed to prevent them from receiving relevant information: The experimental birds were continuously rotated quite rapidly (1.5 cps, radial acceleration about 4 g); in addition, they were exposed to an artificial magnetic field and supplied with bottled air. Control birds were transported in open-air cages on top of the van with free view to all sides.Five pairs of releases from equal distances in opposite directions were conducted. Experienced birds were released at distances of about 15, 90, and 300 km from the loft, inexperienced birds at distances of about 180km. In each pair of releases both groups of pigeons were significantly homeward oriented. Neither in initial orientation nor in homing performance nor in the distribution of recoveries were the experimental birds inferior to the controls or in any perceptable way different from them.It is concluded that homing of passively displaced pigeons is not primarily based on information gathered during the outward journey.Abbreviations EP experimental pigeon(s) - CP control pigeon(s) The possibility to maintain our pigeon loft in a building that belongs to the Zoological Institute (Prof. M. Lindauer) of the University of Würzburg is gratefully acknowledged.  相似文献   

19.
The influence of flight and flight duration on 13 blood parameters was studied in homing pigeons which returned after 2–22 h of flight from release sites 113–620 km away. The haematocrit value decreased from 54.4% in controls to 51.0% in the flown birds. A lowered haematocrit overproportionately improves blood flow. The plasma concentrations of glucose and l(+)-lactate did not differ between experimental and control birds. This is compatible with the idea that carbohydrates are utilized as fuel mainly in the initial phase of flight. Plasma free fatty acid levels were significantly increased during flight and triglyceride concentrations gradually decreased with progressive flight duration. These findings support the view that lipids are the main energy source during flight. Plasma uric acid concentrations were increased two- to fourfold in flown birds. Urea levels gradually rose with flight duration to 400% of controls. Plasma protein concentration was lowered in flown pigeons. These results hint to an increased protein degradation during flight. Na+, K+, Ca2+, and Mg2+ levels in the plasma of the flown pigeons were not significantly different from control values. This finding together with the urea/uric acid ratio indicates that no severe dehydration occurred in our pigeons during free-range flight.Abbreviations FA fatty acids - FFA free fatty acids  相似文献   

20.
The triphenylmethyl (Tr) group undergoes a transfer (transetherification or disproportionation) between the molecules of 5′-O-Tr-2′-deoxynucleosides in a process mediated by anhydrous sulfates of Cu+2, Fe+2, or Ni+2 to yield mixtures of 3′,5′-bis-O-Tr and 3′-O-Tr products. If phenylmethanol is present in a reaction medium, detritylation results with concomitant formation of phenylmethyl triphenylmethyl ether. The behavior of t-butyldimethylsilyl (TBDMS) group in 5′-O-TBDMS-2′-deoxynucleosides is exactly the same. Such type of transetherifications was not observed before for the O-Tr and O-TBDMS groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号