首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different disturbances in similar habitats can produce unique successional assemblages of plants. We collected plant species composition and cover data to investigate the effects of three common types of disturbances—fire, anthropogenic clearing (‘cleared’), and clearing followed by goat grazing (‘cleared‐and‐grazed’)—on early‐successional coppice (dry forest) community structure and development on Eleuthera, Bahamas. For each disturbance type, both the ground layer (<0.5 m height) and shrub layer (>0.5 m height) were sampled in eight patches (>1 ha) of varying age (1–28 yr) since large‐scale mature coppice disturbance. Overall, plant communities differed among disturbance types; several common species had significantly higher cover in the shrub layer of fire patches, and cleared‐and‐grazed patches exhibited higher woody ground cover. Total percent cover in the shrub layer increased in a similar linear fashion along the investigated chronosequence of each disturbance type; however, cover of the common tree species, Bursera simaruba, increased at a notably slower rate in cleared‐and‐grazed patches. The pattern of increase and subsequent decrease in cover of Lantana spp. and Zanthoxylum fagara in the shrub layer was characterized by longer persistence and higher covers, respectively, in cleared‐and‐grazed patches, which also exhibited low peak cover and fast decline of nonwoody ground cover. Our results suggest that goats may accelerate some aspects of succession (e.g., quickly removing nonwoody ground cover) and retard other aspects (e.g., inhibiting growth of tree species and maintaining early‐successional shrubs in the shrub layer). These effects may lead to different successional trajectories, and have important conservation implications.  相似文献   

2.
Luca Borghesio 《Plant Ecology》2009,201(2):723-731
This study focuses on the effect of fire on lowland heathlands at the extreme southern edge of their European distribution (Vauda Nature Reserve, NW Italy). Forty-nine plots (50 m radius) were surveyed between 1999 and 2006. Each year, fire occurrences were recorded and per cent cover of four vegetation types (grassland, heath, low shrubland, and tall shrubland) was estimated in each plot. Vascular plant species richness was also recorded in 255, 1 m2 quadrats. After a fire, grassland vegetation expanded, but then declined rapidly as heath and shrubland recovered: 7 years after a fire, tall shrubland encroached on to more than 40% of the plots, and grassland declined from 50% to 20% cover. Between 1999 and 2006, Betula pendula shrubland greatly expanded, while grassland decreased over most of the Reserve, even where fire frequency was high. Tall shrubland had low plant diversity and was dominated by widespread species of lower conservation value. By contrast, early successional vegetation (grassland and low shrubland) had higher richness and more narrowly distributed species, indication that the development of tall shrubland causes significant species loss in the heathland. Italian lowland heathlands are characterized by high rates of shrubland encroachment that threatens both habitat and species diversity. Burning frequencies of once in 3–6 years seem appropriate in this habitat, but burning alone might not suffice without actions to increase herbivore grazing.  相似文献   

3.
We investigated the potential of plant functional responses to speed up restoration in a postfire ecosystem. The patterns of change in plant nutrient uptake and water potential after compost amendment were monitored for 2 years in a 7‐year‐old postfire shrubland in southeastern France. We studied four different stress‐tolerant species with contrasting life traits: three shrub species and a perennial herb. Three treatments were applied: control, 50 and 100 Mg/ha of fresh cocomposted sewage sludge and green waste. In both compost treatments, concentrations of all the macronutrients increased. The amendment improved N and cation nutrition, but the positive effect of compost on plant nutrient status was most apparent on leaf P concentrations, indicating that P was a limiting nutrient in this shrubland. Compost had no significant short‐term effect on trace metal concentrations in plants. The plant nutrition response of different species to the compost varied; the nutritional status of Brachypodium retusum and Cistus albidus improved the most, whereas that of Quercus coccifera and Ulex parviflorus improved the least. Woody species exhibited no increase in N stocks. Phosphorus accumulation was also about three times higher in plots amended at 50 Mg/ha than in control plots for B. retusum and C. albidus. The severe summer drought of 2003 altered the compost effect. Contrary to our expectations, plants on amended plots did not exhibit a better water status in summer: the effect of the summer drought had a greater effect on water status than did the compost treatment.  相似文献   

4.
Question: Is the expansion of Hippophaë rhamnoides in coastal dunes associated with a decline in plant species richness, and is this decline best described by a hump‐backed relationship between species number and shrub cover? Location: Grey and yellow dunes on the East Frisian islands Spiekeroog and Norderney. Methods: Total plant species richness as well as the number of herbaceous and cryptogam species were determined in 2001 using plots of 16 m2 size. We compared shrubland plots with varying cover of Hippophaë with neighbouring dune grassland plots without shrubs as reference sites. Soil samples were collected to determine the values of some important edaphic variables (pH, organic matter, nitrogen). Results: The shrubland plots with Hippophaë had or tended to have lower soil pH and C/N ratios and higher contents of organic matter and nitrogen than the grassland plots. Total species richness was marginally significantly related to the cover of Hippophaë in a hump‐backed manner on both islands. The pattern was more pronounced for mosses and lichens than for herbaceous species. For all species groups on Spiekeroog and for the herbaceous species on Norderney, the hump‐backed relationship was much improved when using the difference in species number between shrubland and grassland plot as a dependent variable. Relationships could be improved by including the soil parameters as co‐variables. Species richness was highest at moderate levels of shrub expansion, while it was much reduced in very dense shrubland. The decrease in species number is caused by the decline in grassland species typical of the open dunes, including some rare taxa. Conclusions: The expansion of Hippophaë rhamnoides is a serious threat to the plant species richness of open coastal dunes, and needs to be counteracted by management measures.  相似文献   

5.
The long‐term impacts of wildfires on animal populations are largely unknown. We used time‐series data based on a tracking index, from coastal NSW spanning 28 years after a wildfire, to investigate the relative influence of habitat structure, species interactions and climate on post‐fire animal population dynamics. The fire had an immediate impact on habitat structure, reducing and simplifying vegetation cover, which then underwent post‐fire successional change including an increase and plateau in tree canopy cover; an increase, stabilization and then decline in shrub cover; and an increase in ground litter cover. Population changes of different animal species were influenced by different components of successional change, but there was also evidence that species interactions were important. For example, bandicoots (Isoodon obesulus and Perameles nasuta combined) increased concurrent with an increase in shrub cover then declined at a faster rate than a direct association with senescing shrub cover would suggest, while the feral cat (Felis catus) population changed with the bandicoot population, suggesting a link between these species. Potoroos (Potorous tridactylus) increased 10 years after the fire concurrent with the closing tree canopy, but there was also evidence of a negative association with feral foxes (Vulpes vulpes). Variation in rainfall did not have significant effects on the population dynamics of any species. Our results suggest that changes in habitat structure play a key role in the post‐fire dynamics of many ground‐dwelling animals and hence different fire regimes are likely to influence animal dynamics through their effects on habitat structure. However, the role of predator–prey interactions, particularly with feral predators, is less clear and further study will require manipulative experiments of predators in conjunction with fire treatments to determine whether feral predator control should be integrated with fire management to improve outcomes for some native species.  相似文献   

6.
Rosmarinus officinalis is a dominant shrub species of calcareous Mediterranean communities that has increased its presence in wide areas due to fire frequency increase and field abandonment. We aimed to study the capacity of adult shrubs to respond to nutrient pulses such as those produced by fires and human driven eutrophycation. In a 5 years old post-fire Mediterranean shrubland we conducted an experiment to investigate the effects of irrigation and N and P fertilisation on the growth, nutrient status and flowering effort of adult plants of the dominant shrub R. officinalis in a post-fire shrubland. The responses were monitored during the immediate 3 years after fertilisation. P fertilisation increased plant growth, produced a great increase in P aerial mineralomass and P concentration in leaf and stems and had a slight positive effect on flowering effort. Irrigation increased plant growth, but did not have significant effects on nutrient contents and flowering. The results show that adult individuals of the Mediterranean shrub R. officinalis have a notable capacity to positively respond in growth and in nutritional status to a sudden increase of the limiting nutrient, in this case P, and in a lesser extent, to an increase of water supply. These capacities may be important under the more unpredictable nutrient and water availability conditions expected for the near future; they will allow to take advantage of the pulses of higher nutrient and water availability in the middle of dry periods, thus increasing the community capacity to improve the nutrient retention in the ecosystem.  相似文献   

7.
Abstract. We studied the interactions between woody perennial species and native and non-native annual species in a number of vegetation types within a nature reserve in the Western Australian wheatbelt. In particular, we examined the responses of annuals to perennial canopy removal, fire, soil disturbance and nutrient additions, and the effects of removal of annuals on perennial seedling regeneration. Experimental shrub removal significantly increased the abundance of annuals in a dense shrubland dominated by Allocasuarina campestris, but had no effect in a more open species-rich sandplain heath. Soil disturbance and nutrient addition in the heath area had no significant influence on annual abundance until three years after treatment. Fire had no clear effect on annual abundance in the heath within the reserve, but promoted a large increase in non-native species within an adjacent roadverge. A pattern of increased soil nutrient levels was accompanied by greatly increased non-native annual abundance beneath individual trees of Santalum spicatum. Exploratory laboratory bioassay experiments indicated that several woody perennials produced leachates that were capable of reducing the germination or growth of the introduced grass Avena fatua, indicating that allelopathy may be an important component of the interaction between the annual and perennial components. Within a woodland community, fire temporarily reduced the abundance of annual species and increased the establishment of perennial seedlings. Field experiments showed that annuals significantly reduced the survival of seedlings of the shrub Allocasuarina campestris. Our results indicate that intact native vegetation canopies effectively prevent invasion by non-native annuals, and that regeneration by native perennials is likely to be inhibited by the presence of an abundant annual cover.  相似文献   

8.
Question: Landscape models of fire occurrence in ecosystems assume that the time since the last fire determines vegetation flammability by enabling the accumulation of dead biomass. In this study we ask if Mediterranean basin shrublands respond to these models or, on the contrary, if initial successional stages in these ecosystems could be more flammable than later stages. Location: Mediterranean shrubland in the Valencia region, eastern Spain. Methods: Using different stages of vegetation development (5, 9, 14 and 26 years since the last fire), we first study the structural comiosition of the above‐ground biomass in 375 individuals of nine woody species. Then, we measure how the standing dead biomass varies during succession, taking into account the surface cover of each species and the quantity of total dead biomass accumulated in different successional stages (3, 9, 14 and 26 years since the last fire). Results: The largest amount of standing dead biomass at the plant community level is observed in the middle stages of the succession. Early successional species, such as Cistus spp., Ulex parviflorus and Pinus halepensis, have a higher percentage of standing dead biomass at earlier stages in the succession than species typical of later successional stages, e.g. Juniperus oxycedrus, Quercus coccifera and Quercus ilex. Conclusions: The results suggest that monotonic increase in fire hazard with increasing stand age is not necessarily the rule in Mediterranean basin shrublands, since early successional species may accumulate large amounts of standing dead biomass and thus promote fire at early successional stages.  相似文献   

9.
Abstract. Large‐scale disturbances, notably fire and grazing, structure grass and shrubland dynamics in semi‐arid environments. We studied early post‐fire succession in two burned grasslands, one unburned grassland, and one shrubland near the burned area. We observed three processes: (1) establishment of a ‘phantom’ community comprised of fugitive species. Although transient, these species increase diversity and recharge the seed bank before the next disturbance; (2) regeneration of the original community by persistence of resprouter species and by auto‐replacement; (3) early stages of invasion by seedlings of the shrub Fabiana imbricata, which germinate next to shrubland and create new F. imbricata patches. Weed invasion was principally due to the ruderal exotic species Verbascum thapsus from the nearby road verge and by rapid increase of Rumex acetosella cover, another exotic species present before the fire. Although post‐fire climatic conditions are particularly important in semi‐arid environments, succession depends greatly on the regeneration strategies and dispersal abilities of the species present in the burned area. The phantom community occurs only at the first stage of succession when there is little competition for resources. We could call this process ‘the race for occupation of the area’. The second stage, when competition for resources becomes progressively more important, could be called ‘the effort to maintain space’.  相似文献   

10.
Question: What is the effect of fuel management practices in the recovery capacity of seeder‐dominated shrublands? Location: Ulex parviflorus shrubland localities in Mediterranean regions of eastern Spain. Methods: We applied prescribed burning and brush‐chipping as fuel management techniques in three young and three mature shrublands, and evaluated the effects in the following four years. Results: Canopy opening by the treatments allowed increasing species richness through the four years of secondary succession. The treatments produced a change in community structure and dominant species, from the woody seeder Ulex parviflorus to the resprouter grass Brachypodium retusum. Vegetation response was conditioned by both shrubland developmental stage and treatment applied. Burning resulted in more severe modification of the ecosystem, increasing bare soil cover. Four years after fuel management in different aged Mediterranean gorse shrublands, vegetation response followed a similar pattern with the exception of the young, brush‐chipped shrublands. The treatments applied for controlling Ulex parviflorus were seen to be very effective, with the exception of brush‐chipping in young shrublands. Conclusions: Selective brush‐chipping in middle‐aged or mature gorse shrublands would combine a drastic reduction in fire hazard with ecosystem conservation and regeneration.  相似文献   

11.
Phytomass structural characteristics are highly related to vegetation flammability. In fire-prone species like Mediterranean gorse, which accumulate standing dead fuel, susceptibility to fire is a function of fuel load, vegetation composition and fuel cover, and these characteristics change with time. Thus, for effective fuel control management, knowledge of the vegetation structural dynamics related to fire risk is crucial for preventing future fires. This study analyses structural dynamics in the above-ground phytomass of Ulex parviflorus shrublands in relation to different stages of flammability, i.e., the amount of time elapsed since the last fire. For this, 152 plants were cut from shrublands at different stages of development (young, mature and senescent), and various dimensional measurements were taken on each. The phytomass was separated into living or dead fuel fractions as well as into twigs or branches depending on the stem diameter. Basal diameter is the variable that best predicted Ulex parviflorus total phytomass as well as that of the different fractions. Both dimensional and phytomass variables increased with plant development. In the young shrublands Ulex parviflorus constitutes 54% of total phytomass, and Ulex parviflorus's dead twigs fraction accounts for 5% of total phytomass. In the mature and senescent shrublands, this species represents 80% of total shrubland phytomass, and dead twigs reach values greater than 40%. Our results show that structural changes in the fuel over short periods of time (young and mature) reveal critical periods in shrub development. Identification of these stages is a necessary tool for planning fuel control programmes.  相似文献   

12.
Eight forest types varying in disturbance frequencies were identified along an elevational gradient in Uttaranchal, central Himalaya. Low elevation forests were close to human habitation and had high disturbance frequency, while high elevation forests were situated far from the human habitation and had low disturbance. The dominant tree species at low elevation were Pinus roxburghii and Quercus leucotrichophora, while Q. floribunda and Q. semecarpifolia dominated the high elevation forests. Pyracantha crenulata was the shrub present in all the forests except in Q. semecarpifolia forest and Anaphalis contorta, a herb species, was present in all the forests. Disturbance decreased the dominance of single species and increased the plant biodiversity by mixing species of different successional status. Species richness and diversity for all the vegetation layers were higher in low elevation–high disturbance forests. Mean tree density decreased from high to moderate and increased in low disturbance. The shrub density decreased from high to low disturbance while the reverse occured for herbs. High proportion of early successional species in disturbed forests indicated that disturbance induces succession. The mean number of young individuals increasing from high to low disturbance indicates that disturbance adversely affects regeneration. But, however, the high number of young individuals of Coriaria nepalensis, a small non-leguminous nitrogen fixing tree, in disturbed forests shows that the forest is regenerating. This species could be helpful in the re-establishment of original vegetation through triggering the regeneration of these forests. High elevation–low disturbed forests separated from low elevation–high disturbed forests. Forest type and elevation may have more influence on tree richness while shrub and herb richness may be more sensitive to disturbance and forest types.  相似文献   

13.
African perennial C4 grasses are highly successful invaders in Hawaiian ecosystems. We examined the effects of African molasses grass (Melinis minutiflora Beauv.) on Hawaiian shrubland nitrogen (N) dynamics without the influence of fire disturbance. Vegetation tissue carbon and nitrogen chemistry, soil inorganic N pools, net N mineralization rates, and total soil N were studied in three adjacent areas: a monospecificMelinis grassland, a mixed grass/shrubland mosaic, and an un-invaded shrubland.Melinis plots within the mosaic area exhibited the largest inorganic N pools and fastest net N mineralization rates, but were temporally variable with grass phenology. Un-invaded shrubland plots contained the smallest inorganic N pools and lowest net N mineralization rates. Grass foliar C:N and litter C:N were lower than those of common shrubland species, providing one possible link between species and ecosystem N dynamics at this site. The combined effects of N cycle modification, successful light competition, and fire-cycle enhancement make the invasion ofMelinis a significant perturbation to Hawaiian shrubland ecosystem function and successional dynamics. ei]Section editor H Lambers  相似文献   

14.
Question : How do interactions between rocky landscape features and fire regime influence vegetation dynamics? Location : Continental Eastern USA. Methods : We measured vegetation, disturbance and site characteristics in 40 pairs of rocky and non‐rocky plots: 20 in recently burned stands, and 20 in stands with no evidence of recent fire (‘unburned’ stands). Two‐way analysis of variance (ANOVA) was used to assess the main and interaction effects of fire and rock cover on plant community composition. Results : In burned stands, rock cover had a strong influence on vegetation. Non‐rocky ‘matrix’ forests were dominated by Quercus, and had abundant ground cover and advance regeneration of early and mid‐successional tree species. Burned rocky patches supported greater density of fire‐sensitive species such as Acer rubrum, Sassafras albidum and Nyssa sylvatica and had little advance regeneration or ground cover. Quercus had fewer fire scars and catfaces (open, basal wounds) on rocky patches, suggesting that rocky features mitigate fire severity. In unburned stands, differences between rocky and non‐rocky patches were less distinct, with both patch types having sparse ground cover, little tree regeneration, and high understorey densities of relatively shade tolerant A. rubrum, N. sylvatica and Betula lenta. Conclusion : Under a sustained fire regime, heterogeneity in rock cover created a mosaic where fire‐adapted species such as Quercus dominate the landscape, but where fire‐sensitive species persisted in isolated pockets of lower fire severity. Without fire, species and landscape richness may decline as early‐mid successional species are replaced by more shade tolerant competitors.  相似文献   

15.
Absence of fire is increasingly recognized as an important driver of soil nutrient budgets in Eucalyptus forest, especially in forests affected by premature Eucalyptus decline, due to the effects of soil nutrient accumulation on nutrient balances and forest community dynamics. In this study, we present a dataset of soil and foliar nutrient analyses, and vegetation measurements from a fire chronosequence survey in native E. delegatensis forest. Measured indices include total soil and extractable soil nitrogen (N), or phosphorus (P), soil organic carbon (C), soil acid‐phosphatase (PME) activity, foliar N and foliar P, and understorey and overstorey vegetation canopy height. We show that in some cases indices are strongly linked to time since fire (2–46 years). Time since fire correlated positively with foliar N, total and extractable soil N, soil organic C, and also soil PME activity; the latter an indicator of biotic P demand. Differences in the strength of these relationships were apparent between two geology types, with stronger relationships on the potentially less‐fertile geology. The strong positive correlation with time since fire and understorey canopy height reflected increasing shrub biomass and thickening of the shrub layer. The strong positive correlation for soil or foliar N, but not P, with time since fire, indicates that P does not increase relative to N over time. P may, therefore, become limiting to growth in this plant community. Similarly, the significantly higher concentrations of soil N but not P, also found in both older and long‐unburnt forest stands (>100 years since management), may exacerbate a situation of soil nutrient limitation over several decades. A characteristic feature of long unmanaged stands is a developing tea tree (Leptospermum sp.) understorey, which may benefit from elevated soil N availability and increasing organic C accumulation with prolonged fire absence. This increased shrub biomass would outcompete Eucalyptus for resources, including soil nutrients and water.  相似文献   

16.
Questions: How does woody vegetation abundance and diversity differ after natural disturbances causing different levels of mortality? Location: Abies balsamea–Betula papyrifera boreal mixed‐wood stands of southeast Quebec, Canada. Methods: Woody vegetation abundance and diversity were quantified and compared among three disturbance‐caused mortality classes, canopy gap, moderate‐severity disturbances, and catastrophic fire, using redundancy analysis, a constrained linear ordination technique, and diversity indices. Results: Substantial changes in canopy tree species abundance and diversity only occurred after catastrophic fire. Shade‐tolerant, late‐successional conifer species remained dominant after canopy gap and moderate‐severity disturbances, whereas shade‐intolerant, early‐successional colonizers dominated canopy tree regeneration after catastrophic fire. Density and diversity of mid‐tolerant and shade‐intolerant understory tree and shrub species increased as the impact of disturbance increased. Highest species richness estimates were observed after catastrophic fire, with several species establishing exclusively under these conditions. Relative abundance of canopy tree regeneration was most similar after canopy gap and moderate‐severity disturbances. For the sub‐canopy tree and shrub community, relative species abundances were most similar after moderate‐severity disturbances and catastrophic fire. Vegetation responses to moderate‐severity disturbances thus had commonalities with both extremes of the disturbance‐caused mortality gradient, but for different regeneration layers. Conclusions: Current spatio‐temporal parameters of natural disturbances causing varying degrees of mortality promote the development of a complex, multi‐cohort forest condition throughout the landscape. The projected increase in time intervals between catastrophic fires may lead to reduced diversity within the system.  相似文献   

17.
Abstract. Demographic structure of 12 chaparral sites unburned for 56 to 120 years was investigated. All sites were dominated by vigorous shrub populations and, although there was colonization by seedlings of woodland tree species in several stands, successional replacement of chaparral was not imminent. Although successional changes in community composition were evident, there was no indication of a decline in species diversity. Non-sprouting species of Ceanothus suffered the greatest mortality at most, but not all, sites. Sprouting shrubs, such as Quercus and Heteromeles had very little mortality, even in stands more than a century old. All postfire resprouting species had multiple stems of different ages indicating these shrubs were capable of continuously regenerating their canopy from basal sprouts. Ceanothus populations were highly clumped and there was a significant correlation across all sites between variance/mean ratio and percentage mortality. As Ceanothus populations thinned, they became less clumped. In mixed chaparral stands, Quercus and Heteromeles were significantly taller than associated Ceanothus shrubs and overtopped the Ceanothus; at two sites, the density of live Quercus per plot was correlated with the density of dead Ceanothus. Thus, mortality of Ceanothus stems is likely related to both intra and interspecific interations. Seedling recruitment was observed for most shrub species that regenerate after fire by resprouting; seedling and sapling densities ranging from 1000–36 500 ha-1 were recorded for Quercus dumosa, Rhamnus crocea, Prunus ilicifolia, Heteromeles arbutifolia and Cercocarpus betuloides. For all but the last species, seedlings and saplings were most abundant beneath the canopy cover and not in gaps. Across all sites, recruitment was significantly correlated with depth and bio-mass of the litter layer. Cercocarpus betuloides was present in several stands, but seedling establishment was found only in one very open, disturbed stand. Regardless of stand age, taxa such as Adenostoma, Arctostaphylos and Ceanothus, which recruit seedlings after fire, had no significant seedling production.  相似文献   

18.
In the Mediterranean Basin, most cultivated areas were abandoned in the last century and are now in various stages of old-field succession. The aim of this work was to analyse the successional trajectories of these ecosystems, and to assess possible deviations in these pathways due to fire occurrence at high or low recurrence levels. Old-fields abandoned either about 50 or about 100 years ago were selected in SE Spain. Within the 50-year-old abandoned fields, plots were established which had been burned by 1, 2 and 3 fires in the last 25 years. Cover values of vascular species were sampled and then analysed by means of multivariate analysis. Euclidean distances between resulting communities were used as an indicator of the possible deviation from the unburned successional pathway. Our results pointed to the possibility that different successional pathways may exist depending on fire occurrence and recurrence. In the absence of fire, the vegetation is dominated by pioneer species, mainly Pinus. With the passage of time this vegetation will become dominated by later successional tree species (Quercus). However, when early-successional communities are affected by fire, the succession can be diverted. A single fire is enough to change Pinus forests into alternative stable states dominated by Rosmarinus officinalis shrub communities, where the colonisation of species in later successional stages is arrested. This deviation increases in high fire recurrence regimes where the vegetation changes to dwarf shrubs and herbs.  相似文献   

19.
The relative importance of facilitation and competition between pairwise plants across abiotic stress gradients as predicted by the stress‐gradient hypothesis has been confirmed in arid and temperate ecosystems, but the hypothesis has rarely been tested in tropical systems, particularly across nutrient gradients. The current research examines the interactions between a pioneer shrub Rhodomyrtus tomentosa (the nurse plant) and seedlings of a transplanted native woody Schima superba (the target species) in a tropical system in which position on a slope corresponds with a nutrient gradient; high soil nutrients at the slope bottom and relatively low soil nutrients at the slope top. In contrast, soil physical traits were more favorable for seedling growth under the shrub than in open spaces. The effect of R. tomentosa on S. superba survival was positive (facilitation) at the top of the slope, as indicated by the relative interaction index (RII), but negative in the bottom (competition). RII indicated a positive effect on seedling height at the top of the slope but was not at the bottom. Seedling survival was positively related to soil nutrient level and negatively related to soil acidity, but seedling growth of S. superba seemed to be enhanced by the shrub canopy. Thus, the results seem to support stress‐gradient hypothesis in terms of target species survival but not growth. We suggest using the shrub as a nurse plant in forest restoration in tropical degraded land with caution because not all of its effects on target species are positive .  相似文献   

20.
Mediterranean ecosystems are hotspots of species richness where fire is one of the key processes influencing their structure, composition and function. Post‐fire seedling emergence constitutes a crucial event in the life cycle of plants and species‐specific temporal and spatial patterns of seedling emergence have been hypothesized to contribute to the high diversity in these ecosystems. Here we study the temporal and spatial patterns of seedling emergence observed for the four dominant species (Cistus albidus, Ulex parviflorus, Helianthemum marifolium, Ononis fruticosa) after an experimental fire in a Mediterranean gorse shrubland. In a first analysis we compared the timing of emergence of each species using the Kaplan‐Meier method. The spatial component of seedling emergence and the spatiotemporal relationship between different cohorts of the same species were analyzed using recent techniques of spatial point pattern analyses. We found a bimodal temporal pattern of emergence. Emergence of Cistaceae species (H. marifolium and C. albidus) occurred predominantly early after the fire while Fabaceae (O. fruticosa and U. parviflorus) emerged mainly during the following autumn. Individually, all species showed an aggregated spatial pattern and, when testing for pair interactions, we found that the clusters of individual species were spatially segregated. Additionally, the clusters of individual species showed an internal spatial structure where seedlings of different cohorts were spatially segregated. Theoretical models predict that these patterns will promote species coexistence. We identified a number of mechanisms that all have the potential to contribute to the observed pattern formation. However, the potential interaction among these mechanisms are complex and not easy to predict. Our analyses take a significant step forward in studying seedling emergence in fire prone ecosystems since, to our knowledge, this is the first time that both spatial and temporal patterns of all dominant species have been studied together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号