首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3H-nicotine binding was performed on intact and solubilized rat brain membranes as well as membranes from the electric organ of the Torpedo fish. The Kd for binding to intact and solubilized rat brain membranes was 5.6 × 10?9 M and 1.1 × 10?8M respectively, and the binding capacity 2.0 × 10?14 and 3.0 × 10?13 moles /mg protein respectively. The Kd for Torpedo membranes was 3.1 × 10?7M and the binding capacity 6.8 × 10?13 moles/mg protein. The binding was stereospecific with the affinity of the (?)-nicotine being about 8 times greater than the (+)-nicotine with all three preparations. The relative affinity for the nicotine binding site of nicotinic cholinergic drugs was considerably less in rat brain than in Torpedo membranes, where the sites are mainly cholinergic. A comparison was made of the ability of a variety of cholinergic drugs and nicotine derivatives to compete with 3H-nicotine binding and their relative pharmacologic potency to produce or inhibit a characteristic prostration syndrome caused by (?)-nicotine administered intraventricularly to rats. From such studies it was concluded that nicotine, in part, may be interacting at noncholinergic sites in rat brain.  相似文献   

2.
The specific binding of [3H] Prostaglandin (PG) F2α to bovine corpus luteum cell membranes prepared in homogenizing buffer containing either 1 mM EDTA (H-EDTA) or 1 mM Ca2+ (HCa2+) was examined. The membranes prepared in H-EDTA buffer bound less [3H] PGF2α and had a single class of PGF2α receptors with an apparent dissociation constant (Kd) of 2.7 × 10?8M. The addition of Ca2+ to these membranes resulted in increased binding with the appearance of new PGF2α receptors of Kd = 4.3 × 10?9M. The membranes prepared in HCa2+ buffer contained two classes of receptors with Kds = 2.9 × 10?9M and 2.9 × 10?8M. The removal of Ca2+ from these membranes resulted in lower binding as well as a complete disappearance of receptors of Kd = 2.9 × 10?9M. These results suggest the dependency of high affinity PGF2α receptors, in bovine corpus luteum cell membranes, on cations.  相似文献   

3.
Abstract— The specific interaction of S-100 protein with disrupted synaptosomes was further investigated. The specific binding is a saturable and reversible process, and is time, temperature, and strictly Ca2+ -dependent. Two affinities affect the interaction (Kins= 7.04 × 10?9 M. 1.28 × 1012 binding sites/ mg protein; Kins2= 3.91 × 10?7M, 2.96 × 1013 binding sites/mg protein). The half-saturation time is about 5.5 min at 37°C. The half-life of the complex is 17 min at 37°C. At 0°C the binding is 75% slower than at 37° C, and only one-third of the binding sites are involved. The binding capacity is decreased by high NaCl concentrations and by pretreating membranes at high temperatures. Digestion of membranes with trypsin practically abolishes the specific binding. Treatment of membranes with phospholipase C decreases the specific binding, while phospholipase D enhances it to some extent. Other lipid extractors decrease significantly the extent of the interaction. Synaptic plasma membranes seem to be the synaptosomal component involved in the high affinity binding. The S-100 binding activity seems to undergo developmental changes, the adult values of kinetic parameters being reached around the 16th postnatal day in the rat. The results are discussed also in relation to the membrane-bound fraction of S-100.  相似文献   

4.
Triiodothyronine, reverse triiodothyronine and thyroxine were found to inhibit 125I labelled thyrotropin binding to human thyroid plasma membranes in vitro. Both the thyrotropin binding and the effect of the above iodoamino-acids on this binding were pH, temperature and time dependent, 50% inhibition of thyrotropin binding was observed at 2×10?7M concentration of reverse triiodothyronine or thyroxine and at 1.1 × 10?6M concentration of triiodothyronine. The kinetic studies of thyrotropin binding revealed that the maximal capacity of receptor sites for the pituitary hormone is unaffected by the presence of thyroid hormones. On the other hand the association and dissociation constants for thyrotropin binding changed when iodoaminoacids were present in the incubation medium /Ka 8.13 × 107M?1 vs 1.6 × 108M?1 and Kd 1.14 × 10?8M vs 4.55 × 10?9M respectively, depending on the pH/. The double reciprocal plots showed competitive mechanism of inhibition. The present study suggest that triiodothyronine, reverse triiodothyronine and thyroxine are able to modify the thyrotropin binding to membrane receptors.  相似文献   

5.
1×10?6M somatostatin causes a 37–44% inhibition of glucose induced insulin release from freshly isolated rat islets of Langerhans. A 81 to 95% inhibition is observed when the isolated islets are maintained in organ culture for 2 days prior to the somatostatin treatment. The dose curve of somatostatin on cultured islets shows an apparent KI of 1.4×10?9. The tetradecapeptide also causes a reversible inhibition of the stimulation of insulin release by 5 mM theophylline and 23 mM K+.  相似文献   

6.
Lymphocyte plasma membranes bind 45Ca2+ with three affinity sites: KAl = 4.0 . 106 M?1, KA2 = 8.5 . 104 M?1 and KA3 = 4.2 . 102 M?1, and Ca2+ binding capacities are 0.10, 1.2 and 85 nmoles Ca2+/mg protein. In the presence of 15 μg/ml ConA the Ca2+ binding constants were KA1 = 4.6 . 106 M?1, KA2 = 4.4 . 104 M?1 and KA3 = 4.2 . 102 M?1. The Ca2+ binding capacity was increased by ConA, to 0.13, 2.4 and 91 nmoles/mg protein. The Ca2+ ATPase activity of lymphocyte membranes was increased by ConA from 1 to 2 μmol P/protein × h. The 45Ca2+ uptake was stimulated by ConA and PHA to about 16 %.  相似文献   

7.
M.T. Lin  Ch.V. Rao 《Life sciences》1978,22(4):303-312
Intact viable bovine luteal cell suspensions prepared by collagenase digestion of luteal tissue were used in studying the selected properties of [3H] prostaglandin (PG) F binding and compared with those observed in plasma membranes. [3H]PGF specific binding to luteal cells was a rapid (K1 = 8.4 × 104M?12αS?1), reversible (K?1 = 1.8 × 10?4S?1) and saturable process at 24°. There was a single class of receptors with an apparent dissociation constant of 10.6 nM and 1.8 × 105 receptors per cell. The presence of increasing amounts of unlabeled PGs inhibited [3H]PGF binding in a dose-dependent manner. The potency order for this inhibition was: (15S) 15-methyl-PGF methyl ester > ICI-80,996 > PGF > ICI-81,008 > PGF > PGE2, (15S) 15-methyl-PGE2 methyl ester > PGF metabolites > other PGs, PGF metabolites and PGE metabolites. Other than the homegeneous nature of binding and a greater association rate in cells, the rest of the [3H]PGF binding properties in cells were in good agreement with those observed in plasma membranes.  相似文献   

8.
The interactions of chymotrypsin, subtilisin and trypsin with a low MW proteinase inhibitor from potatoes were investigated. The Ki value calculated for the binding of inhibitor to chymotrypsin was 1.6 ± 0.9 × 10?10M, while the second-order rate constant for association was 6 × 105 M?1/sec. Although binding was not observed to chymotrypsin which had been treated with diisopropyl fluorophosphate or with l-tosylamide-2-phenylethyl chloromethyl ketone, the 3-methylhistidine-57 derivative bound inhibitor with a Ki value of 9.6 × 10?9 M. The inhibitor also exhibited a tight association with subtilisin (Ki < 4 × 10?9 M). In contrast, little inhibition of trypsin was observed, and this was believed to be due to low levels of a contaminant in our preparations. No evidence for reactive site cleavage was observed after incubation of the inhibitor with catalytic amounts of chymotrypsin or subtilisin at acid pH.  相似文献   

9.
Kinetic properties of rat hepatic prolactin receptors   总被引:1,自引:0,他引:1  
Binding of 125I-labelled ovine prolactin to female rat liver membranes underequilibrium conditions showed an apparent Kd of 200 pM, and a Hill coefficient of 1.0. The association rate was second order, with a rate constant K1, of 2.1 × 107, 1.4 × 107, 1.2 × 107 and 4 × 106 M?1. min?1 at 37, 30, 24 and 4° respectively. At 24° there were two components to the dissociation; a faster phase with K?1=1.26 × 10?2. min?1 (T12=55 minutes) and a slower phase with K?1=1.103 × 10?3. min?1. The apparent Kd (from K?1K1) was 1.05 nM for the faster phase and 87.5 pM for the slower phase. These data suggest that there is a conformational change following hormone binding which results in an increased receptor affinity, which effectively prevents release of bound hormone.  相似文献   

10.
Intact human platelets bind cytochalasin B (CB) with a capacity of 100– 120 p mols CB/mg protein or approximately 7 × 104 molecules/cell and dissociation constants (KD) ranging from 2 × 10?8 to 10?6 M. Up to 85% of this saturable binding is displaced by 10?5 M cytochalasin E (CE). This CE-sensitive binding also appears heterogeneous with KD similar to those of the overall binding. The CE-insensitive binding, however, appears as a single component with KD ≌ 4 × 10?7 M. The sedimentable constituents from frozen, thawed, and washed cells also bind CB with KD ranging from 2.4 × 10?8 to 1.5 × 10?6 M and a total capacity of approximately 39 p mols/mg protein which accounts for only 4% of the ligand binding to the intact cell. The major portion (60–80%) of this CB binding is displaceable by 500 mM D-glucose and has a KD of 1.5 × 10?6M, while only 10–15% is CE-sensitive with a KD of 2.4 ± 10?8 M. It is concluded that 95% of the saturable CB binding in platelets is associated with the cytosol of which 80–85% is sensitive to CE and that only 3% of the cellular binding is glucose sensitive, membrane-associated binding. If the CE-sensitive binding associated with the cytosol is entirely to actin, the stoichiometry of this binding is approximately one CB to 30 actin monomers, which is greater by an order of magnitude than that for CB binding to muscle actin.  相似文献   

11.
Maximum levels of binding of α-bungarotoxin to foetal human brain membranes were found to remain essentially constant at 30–50 fmol/mg protein (1.1–1.5 pmol/g wet weight in whole brain) between gestational ages of 10 and 24 weeks. Equilibrium binding of α-bungarotoxin to both membranes and to detergent extracts showed saturable specific binding to a single class of sites with Kd (app) values of 3.5 × 10?9 M and 2.4 × 10?9 M respectively. Association rate constants, determined from time courses of binding of α-bungarotoxin to membranes and detergent extracts, were 2.3 × 105 M?1 sec?1 and 2.6 × 105 M?1 sec?1 respectively. Dissociation of α-bungarotoxin from both membrane and detergent extracts showed a rapid initial rate with T12 approx 15 min which, in the case of the detergent extract, was followed by a slower dissociation accounting for the remaining 20% of the bound ligand. Competition studies with a number of cholinergic ligands indicated that the α-bungarotoxin-binding sites in foetal brain display a predominantly nicotinic profile.  相似文献   

12.
Abstract: Pridefine (AHR-1118) is a pyrrolidine derivative with clinically established antidepressant efficacy. Previous work from this laboratory indicates that pridefine is a reuptake blocker of catecholamines and serotonin with weak releasing activity. This study characterized the mode of amine uptake inhibition by pridefine as noncompetitive. The uptake experiments were performed utilizing ouabain instead of zero-degree controls to differentiate between the passive and active components of uptake. Furthermore, the passive component was resolved into diffusion and binding of substrate. Correction was made for the effects of ouabain on binding. Kinetic constants determined from Lineweaver-Burk plots were: Km= 3 × 10?7 M for NE, Km= 9 × 10?8 M for DA, and Km= 3 × 10?8 M for 5-HT. Dixon analyses of uptake at various pridefine concentrations indicated noncompetitive inhibition with Ki= 2.5 × 10?6 M for NE uptake, Ki= 2.0 × 10?6 M for DA uptake, and Ki= 1 × 10?5 M for 5-HT uptake. These constants compare well with IC50 values for the same transmitters: NE, IC50= 2.4 × 10?6 M; DA, IC50= 2.8 × 10?6 M; 5-HT, IC50= 1.0 × 10?5 M. The in vitro results indicate that pridefine is relatively specific as a catecholamine uptake blocker. It differs from tricyclic antidepressants which are reportedly competitive inhibitors of monoamine uptake. The possible mechanisms by which pridefine acts as a noncompetitive inhibitor are discussed.  相似文献   

13.
Both myoblasts and myotubes in cultures of clonal rat muscle cells have action potential Na+ ionophore activity. The ionophore is activated by batrachotoxin (K0.5 = 3 to 5 × 10?7 M) and veratridine (K0.5 = 4 to 6 × 10?5 M) which compete for the same activation site. As in denervated rat muscle, the ionophore of cultured muscle is 100 fold more resistant to inhibition by tetrodotoxin (K0.5 = 1.5 to 3 × 10?6 M) and 20 fold more resistant to inhibition by saxitoxin (K0.5 = 1.5 to 3 × 10?7 M) than in nerve, innervated muscle, or cultured neuroblastoma cells.  相似文献   

14.
4-oxo-N,N,N-trimethylpentanaminium chloride is a competitive inhibitor of eel acetylcholinesterase with KI = 8 × 10?6 M at 25°, 0.1 M NaCl, 0.04 M MgCl2, pH 7.5. Its binding decreases at low pH with pKa = 6.0. N,N,N-trimethylpentanaminium bromide has KI = 4 × 10?4 M under the same conditions. Its binding also decreases with pH with pKa = 5.35. Comparison with literature data indicates that the ketone binds much more strongly than substrates and that its binding shows the pH dependence expected for a transition state analog.  相似文献   

15.
The uptake, binding, and subcellular sites of accumulation of [3H]-cyclosporine (CS) in two human gingival fibroblast strains, GN 23 and GN 54, have been examined. GN 23 responds to CS treatment with a decrease in collagenolysis, while GN 54 does not. Binding of the drug was determined using [3H]-CS concentrations ranging from 10?5 to 10?8 M in the absence or presence of excess unlabeled CS (1 mM). The binding of the drug to both strains was specific and reached a plateau within 10 min, remaining at that level for up to 1 h. Scatchard analysis of the specific binding of [3H]-CS to the responsive GN 23 strain revealed two dissociation constants: KD = 5 × 10?8 M (1.2 × 107 sites/cell) and KD = 1.4 × 10?6 M (2.2 × 108 sites/cell). GN 54, on the other hand, had only one class of low affinity binding site (KD = 0.47 × 10?6 M [1.2 × 108 sites/cell]). Unlabeled CS (0.01–1 mM) inhibited the binding of [3H]-CS in a dose-dependent manner to both strains, as did the calmodulin antagonist W-7, to a lesser extent. However, W-7 inhibited CS binding much more efficiently in GN 54 than in GN 23, suggesting that calmodulin may be the predominant CS receptor in GN 54. In both strains, 70% of the drug accumulated in the crude nuclear fraction after a 1 min incubation, with very little (? 4%) being membrane associated, and the remainder was in the cytosol. In GN 23, CS levels in the crude nuclear fraction reached 80% by 20 min, and remained at this level for up to 1 h. In contrast, in GN 54, at incubation times of more than 1 min, the drug did not selectively accumulate in the crude nuclear fraction, but appeared to be in equilibrium between the nuclear and cytosolic fractions. These data show that the CS resistance of human gingival fibroblasts was not due to their inability to take up and bind CS. Rather, the different effects of CS on the collagenolysis of the responder and non-responder fibroblast strains may be related to the types of CS receptors they possess and differences in the cellular metabolism of CS occurring after binding, including the subcellular sites of drug accumulation. © 1993 Wiley-Liss, Inc.  相似文献   

16.
The binding property between a ligand and its receptor is very important for numerous biological processes. In this study, we developed a high epidermal growth factor receptor (EGFR)‐expression cell membrane chromatography (CMC) method to investigate the binding characteristics between EGFR and the ligands gefitinib, erlotinib, canertinib, afatinib, and vandetanib. Competitive binding analysis using gefitinib as the marker was used to investigate the interactions that occurred at specific binding sites on EGFR. The ability of displacement was measured from the HEK293‐EGFR/CMC column on the binding sites occupied by gefitinib for these ligands, which revealed the following order: gefitinib (KD, 8.49 ± 0.11 × 10?7 M) > erlotinib (KD, 1.07 ± 0.02 × 10?6 M) > canertinib (KD, 1.41 ± 0.07 × 10?6 M) > afatinib (KD, 1.80 ± 0.12 × 10?6 M) > vandetanib (KD, 1.99 ± 0.03 × 10?6 M). This order corresponded with the values estimated by frontal displacement analysis and the scores obtained with molecular docking. Furthermore, thermodynamic analysis indicated that the hydrogen bond or Van der Waals force was the main interaction force in the process of EGFR binding to all 5 ligands. Overall, these results demonstrate that a CMC method could be an effective tool to investigate the binding characteristics between ligands and receptors.  相似文献   

17.
The cell membranes exhibited specific binding to 3H-prostaglandin E1 (3H-PGE1) and 125I-human chorionic gonadotropin (125I-HCG). Unlabeled PGE1,PGE2 (1.4 × 10?7M), PGF and PGF (1.4 × 10?5M) decreased 3H-PGE1 binding by more than 80%. The binding of 125I-HCG was completely inhibited by 5 × 10?8M unlabeled HCG. However, the unlabeled PGE1 (1.15 × 10?6M) and HCG (8.4 × 10?7M) had no effect on 125I-HCG and 3H-PGE1 binding respectively. A PG antagonist, 7-oxa-13-prostynoic acid, inhibited only 3H-PGE1 binding but not 125I-HCG binding. These results suggest the presence of specific receptors for PGE1 and HCG in the cell membranes and that the binding occurs either at two different sites on the same receptor or that each binds to a “different” receptor molecule.  相似文献   

18.
Abstract

The affinity spectrum method has been used to analyse binding isotherms for [3H]-oxytocin to rat myometrial plasma membranes. Three populations of binding sites with dissociation constants (Kd) of 0.6–1.5 × 10?9, 0.4–1.0 × 10?7 and 7 × 10?6 mol/l were identified and their existence verified by cluster analysis based on similarities between Kd, binding capacity and Hill coefficient. When experimental values were compared to theoretical curves constructed using the estimated binding parameters, good fits were obtained. Binding parameters obtained by this method were not influenced by the presence of GTPrS (guanosine-5′-0-(3-thiotriphosphate) in the incubation medium. The binding parameters agree reasonably well with those found in uterine cells, they support the existence of a medium affinity site and may allow for an explanation of some of the discrepancies between binding and response in this system.  相似文献   

19.
The binding of high specific activity, radioactive Concanavalin A to cultured normal human fibroblasts was investigated. We report the presence of two classes of Concanavalin A binding sites on the plasma membranes of these cells. These classes of binding sites are distinguished by their affinities for the lectin. Scatchard analysis of the binding data indicates the presence of a class of high affinity sites which are saturated at about 0.25 μg/ml of Concanavalin A. The other, lower affinity binding sites are not saturated until 50–100 μg/ml Concanavalin A levels are achieved. At 4°C the Ka for the high affinity sites varies between 1.5 – 5 × 109 M?1 depending on the method used to label the Concanavalin A. For the lower affinity sites Ka varies between 1 – 4 × 106 M?1. The average number of high affinity sites per cell is 8 × 105 representing less than 1% of the total receptor sites for the lectin.  相似文献   

20.
Specific binding sites for vasoactive intestinal peptide were characterized in plasma membranes from rat intestinal epithelial cells. At 30°C, the interaction of 125I-labelled peptide with intestinal membranes was rapid, reversible, specific and saturable. At equilibrium, the binding of 125I-labelled peptide was competitively inhibited by native peptide in the 3 · 10?11?3 · 10?7 M range concentration. Scatchard analysis of binding data suggested the presence of two distinct classes of vasoactive intestinal peptide binding sites: a class with a high affinity Kd = 0.28 nM) and a low capacity (0.8 pmol peptide/mg membrane protein) and a class with a low affinity (Kd = 152 nM) and a high capacity (161 pmol peptide/mg membrane protein). Secretin competitively inhibited binding of 125I-labelled peptide but its potency was 1/1000 that of native peptide. Glucagon and the gastric inhibitory peptide were ineffective. The guanine nucleotides, GTP and Gpp(NH)p inhibited markedly the interaction of 125I-labelled peptide with its binding sites, by increasing the rate of dissociation of peptide bound to membranes. The other nucleotides triphosphate tested (ATP, ITP, UTP, CTP) were also effective in inhibiting binding of 125I-labelled peptide to membranes but their potencies were 1/100-1/1000 that of guanine nucleotides.The specificity and affinity of the vasoactive intestinal peptide-binding sites in plasma membranes prepared from rat intestinal epithelial cells, which is in agreement with an adenylate cyclase highly sensitive to the peptide recently characterized in these membranes (Amiranoff, B., Laburthe, M., Dupont, C. and Rosselin, G. (1978) Biochim. Biophys. Acta 544, 474–481) further argue for a physiological role of the peptide in the regulation of intestinal epithelial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号