首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 878 毫秒
1.
G Pearce  S Johnson    C A Ryan 《Plant physiology》1993,102(2):639-644
Six small molecular mass, wound-inducible trypsin and chymotrypsin inhibitor proteins from tobacco (Nicotiana tabacum) leaves were isolated to homogeneity. The isoinhibitors, cumulatively called tobacco trypsin inhibitor (TTI), have molecular masses of approximately 5500 to 5800 D, calculated from gel filtration analysis and amino acid content. The amino acid sequence of the entire 53 residues of one isoinhibitor, TTI-1, and the sequence of 36 amino acid residues from the N terminus of a second isoinhibitor, TTI-5, were determined. The two isoinhibitors differ only at residue 11, which is threonine in TTI-1 and lysine in TTI-5. The isoinhibitors are members of the potato inhibitor II family and show considerable identity with the small molecular mass members of this family, which include the eggplant inhibitor, two small molecular mass trypsin and chymotrypsin inhibitors from potatoes, and an inhibitor from pistils of the ornamental plant Nicotiana alata. Antibodies produced against the isoinhibitors in rabbits were used in radial immunoassays to quantify both the systemic wound inducibility of TTI in tobacco leaves and its constitutive levels in flowers.  相似文献   

2.
The proteinase inhibitor WSCI, active in inhibiting bacterial subtilisin and a number of animal chymotrypsins, was purified from endosperm of exaploid wheat (Triticum aestivum, c.v. San Pastore) by ion exchange chromatography and its complete amino acid sequence was established by automated Edman degradation. WSCI consists of a single polypeptide chain of 72 amino acid residues, has a molecular mass of 8126.3 Da and a pl of 5.8. The inhibition constants (Ki) for Bacillus licheniformis subtilisin and bovine pancreatic alpha-chymotrypsin are 3.92 x 10(-9) M and 7.24 x 10(-9) M, respectively. The inhibitor contains one methionine and of tryptophan residue and has a high content of essential amino acids (41 over a total of 72 residues), but no cysteines. The primary structure of WSCI shows high similarity with barley subtilisin-chymotrypsin isoinhibitors of the Cl-2 type and with maize subtilisinchymotrypsin inhibitor MPI. Significant degrees of similarity were also found between sequences of WSCI and of other members of the potato inhibitor I family of the serine proteinase inhibitors. The wheat inhibitor WSCI has a single reactive site (the peptide bond between methionyl-48 and glutamyl-49 residues) as identified by affinity chromatography and sequence analysis.  相似文献   

3.
The complete primary structure of five chymotrypsin/elastase isoinhibitors isolated from Ascaris lumbricoides was determined by conventional methods. These structures represent the first sequence set for the Ascaris inhibitor family. All five isoinhibitors are single-chain polypeptides crosslinked by five disulfide bridges. Isoinhibitor 1 consists of 63 amino acid residues and has glycine at the N-terminal and histidine at the C-terminal. Isoinhibitors 2-5 all have arginine at the N-terminal, differ at positions 25 and 40, and have different C-terminal regions. Isoinhibitors 2 and 4 have asparagine at positions 25 and serine at position 40, whereas isoinhibitors 3 and 5 have lysine and threonine at these positions, respectively. The different C-terminal regions of isoinhibitors 2-5 account for their varying lengths. Isoinhibitor 1 has no sequence heterogeneity. Frequent repetitions of various dipeptides and one tripeptide are evident along the peptide chain of isoinhibitors 2-5. None of the isoinhibitors contains the aromatic amino acids phenylalanine or tyrosine. Comparison of the amino acid sequence of isoinhibitor 1 with the sequence of isoinhibitors 2-5 shows that they differ at a minimum of 16 positions. The primary structures of isoinhibitors 1-5 from Ascaris do not demonstrate a great degree of homology when compared with the sequence of presently known proteinase inhibitors. However, these isoinhibitors share with a very large number of inhibitor families the presence of half-cystine in the P3 position.  相似文献   

4.
The complete amino acid sequence of a major molecular form of subtilisin inhibitor from adzuki beans (Vigna angularis) was established by manual analysis using 4-N,N-dimethylaminoazobenzene-4'-isothiocyanate (DABITC). Sequencing was performed on the peptides which were derived by digesting the inhibitor with lysyl-endopeptidase and Staphylococcus aureus V8-protease. The inhibitor consisted of 92 amino acid residues and the molecular weight was calculated to be 10,800. A minor form of subtilisin inhibitor was found, which lacked the amino-terminal 19 residues of the major one. Comparison of amino acid sequences revealed that the adzuki bean subtilisin inhibitors were 29-68% homologous in sequence to the inhibitors of so-called "potato inhibitor I family."  相似文献   

5.
The complete amino acid sequence of the proteinase inhibitor III from bovine spleen is reported. It consists of 62 amino acid residues and is identical to that of spleen inhibitor II (an isoinhibitor of the bovine pancreatic trypsin inhibitor, which shares with the latter 89% of sequence identity), except for four extra residues at the C-terminal side. Inhibitor III appears to be an intermediate in the processing of the putative 100-residue primary expression product, which leads to the mature inhibitor II. These results and those previously obtained for another intermediate, isoinhibitor I, are indicative of the following order for the last steps of the precursor processing inhibitor I----inhibitor III----inhibitor II. The mature protein and the two intermediates isolated have a very similar antiproteolytic activity. However, their in vivo target enzyme(s) are not yet known, as also the target enzyme of the bovine pancreatic trypsin inhibitor is not known. Thus, the available data would indicate that either the three isoinhibitors have a distinct functional role, by inhibiting different target enzymes, or inhibitors I and III are obligatory intermediates for directing the final targeting of the mature, functionally relevant inhibitor II.  相似文献   

6.
The amino acid sequence of subunit A of the potato chymotryptic inhibitor I was determined. The sequence was deduced from analysis of fragments and peptides derived from the protein by cleavage with cyanogen bromide, N-bromosuccinimide and dilute acid, and by digestion with trypsin, thermolysin, pepsin and papain. The molecule consists of a single polypeptide chain of 84 residues, which contains two homologous regions each of 13 amino acids. The protein does not appear to be homologous with any other known proteinase inhibitors.  相似文献   

7.
A protein with molecular weight of 21 kD denoted as PKSI has been isolated from potato tubers (Solanum tuberosum L., cv. Istrinskii). The isolation procedure includes precipitation with (NH4)2SO4, gel chromatography on Sephadex G-75, and ion-exchange chromatography on CM-Sepharose CL-6B. The protein effectively inhibits the activity of subtilisin Carlsberg (Ki = 1.67 +/- 0.2 nM) by stoichiometric complexing with the enzyme at the molar ratio of 1 : 1. The inhibitor has no effect on trypsin, chymotrypsin, and the cysteine proteinase papain. The N-terminal sequence of the protein consists of 19 amino acid residues and is highly homologous to sequences of the known inhibitors from group C of the subfamily of potato Kunitz-type proteinase inhibitors (PKPIs-C). By cloning PCR products from the genomic DNA of potato, a gene denoted as PKPI-C2 was isolated and sequenced. The N-terminal sequence (residues from 15 to 33) of the protein encoded by the PKPI-C2 gene is identical to the N-terminal sequence (residues from 1 to 19) of the isolated protein PKSI. Thus, the inhibitor PKSI is very likely encoded by this gene.  相似文献   

8.
Nine proteinase inhibitors, I-VIIa, VIIb, and VIII, were isolated from wild soja seeds by ammonium sulfate fractionation and successive chromatographies on SP-Toyopearl 650M, Sephacryl S-200SF, and DEAE-Toyopearl 650S columns. Reverse-phase HPLC finally gave pure inhibitors. All of the inhibitors inhibited trypsin with dissociation constants of 3.2-6.2 x 10(-9) M. Some of the inhibitors inhibited chymotrypsin and elastase as well. Two inhibitors (VIIb and VIII) with a molecular weight of 20,000 were classified as a soybean Kunitz inhibitor family. Others (I-VIla) had a molecular weight of about 8,000, and were stable to heat and extreme pH, suggesting that these belonged to the Bowman-Birk inhibitor family. Partial amino acid sequences of four inhibitors were also analyzed. The complete sequence of inhibitor IV was ascertained from the nucleotide sequences of cDNA clones encoding isoinhibitors homologous to soybean C-II.  相似文献   

9.
A novel member of the proteinase Inhibitor I family having a trypsin inhibitor specificity was isolated from the fruit of the wild tomato species Lycopersicon peruvianum (L.) Mill. (LA 107) and characterized. The protein is among the isoinhibitors of Inhibitor I that comprise 50% of the soluble proteins in the fruit of this wild species of tomato. A cDNA corresponding to the inhibitor protein and mRNA was isolated and characterized. The Inhibitor I mRNA represented 0.06% of the poly(A) RNA and gene copy number reconstruction experiments gave an estimate of two to four genes/haploid genome. The open reading frame of the cDNA codes for a protein of 111 amino acids having a 42-amino acid prepropolypeptide. The NH2-terminal sequence of the first 21 amino acids of the purified Inhibitor I protein confirmed that the cDNA was identical to the protein. The amino acid sequence of the L. peruvianum fruit Inhibitor I exhibits 74% identity with the wound-inducible Inhibitor I from tomato leaves. Whereas all previously identified members of the Inhibitor I family have either Met, Leu, or Asp at the P1 site and can inhibit enzymes such as chymotrypsin, subtilisin, and elastase, the fruit Inhibitor I possesses Lys at the P1 position. Thus, this is the first member of the extensive Inhibitor I family from plants and animals that exhibits trypsin inhibitory specificity. The presence of this inhibitor in wild tomato fruit may reflect a functional role to protect the tissues against herbivory.  相似文献   

10.
A serine protease inhibitor with a molecular mass of 6106 +/- 2Da (designated as InhVJ) was isolated from the tropical anemone Radianthus macrodactylus by a combination of liquid chromatography methods. The molecule of InhVJ consists of 57 amino acid residues, has three disulfide bonds, and contains no Met or Trp residues. The N-terminal amino acid sequence of the inhibitor (19 aa residues) was established. It was shown that this fragment has a high degree of homology with the N-terminal amino acid sequences of serine protease inhibitors from other anemone species, reptiles, and mammals. The spatial organization of the inhibitor at the levels of tertiary and secondary structures was studied by the methods of UV and CD spectroscopy. The specific and molar absorption coefficients of InhVJ were determined. The percentage of canonical secondary structure elements in the polypeptide was calculated. The inhibitor has a highly ordered tertiary structure and belongs to mixed alpha/beta or alpha + beta polypeptides. It was established that InhVJ is highly specific toward trypsin (Ki 2.49 x 10(-9) M) and alpha-chymotrypsin (Ki 2.17 x 10(-8) M) and does not inhibit other proteases, such as thrombin, kallikrein, and papain. The inhibitor InhVJ was assigned to the family of the Kunitz inhibitor according to its physicochemical properties.  相似文献   

11.
The complete amino acid sequence of the protease inhibitor BWI-4a from buckwheat (Fagopyrum esculentum Moench) seeds has been established by automated Edman degradation in combination with MALDI-TOF mass spectrometry. The inhibitor molecule consists of 67 amino acid residues with a single disulfide bond. Its N-terminus is blocked by a pyroglutamic acid residue. The reactive site of the inhibitor contains an Arg43-Asp44 bond. Mass spectrometry revealed that inhibitor BWI-4a is present in buckwheat seeds in two isoforms differing by a single amino acid substitution of Gly40 for Ala40. Analysis of the amino acid sequence of the BWI-4a inhibitor indicates that this inhibitor is a member of the potato proteinase inhibitor I family.  相似文献   

12.
The complete amino acid sequence of protease inhibitor BWI-4a from buckwheat (Fagopyrum esculentum Moench) seeds, consisting of 67 amino acid residues with a single disulfide bond, has been established by Edman degradation in combination with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Its N terminus is blocked by a pyroglutamic acid residue. Mass spectrometric analysis revealed that inhibitor BWI-4a is present in buckwheat seeds in two isoforms with a single amino acid substitution of Ala40 for Gly40. The reactive site of the inhibitor contains an Arg43-Asp44 bond. Analysis of the amino acid sequence suggests that the buckwheat seed protease inhibitor is a member of the potato proteinase inhibitor I family.  相似文献   

13.
A protease inhibitor specific to trypsin and chymotrypsin was purified from horsegram (Dolichos biflorus) with the inhibition index 0.24 micrograms/micrograms for trypsin and 0.36 micrograms/micrograms for chymotrypsin. In SDS-PAGE, the inhibitor protein was seen as a single band with apparent molecular mass Mr = 15,500. However, on fast protein liquid chromatography (FPLC) or non-denaturating PAGE, the inhibitor resolved into four components revealing the existence of isoinhibitors. Data on amino acid analysis indicate that the isoinhibitors are closely related. The major amino acids in the inhibitor are half cystine (18.9 mole %), aspartic acid (12.7 mole %) and serine (14.3 mole %). The inhibitor was partially stable to 0.1% sodium dodecyl sulphate, 8M urea or 6M guanidine hydrochloride. The inhibitory activity was lost on reduction or carboxamidomethylation or acetylation. Modification of the arginine groups or CNBr cleavage of the protein did not result in significant loss of either tryptic or chymotryptic inhibitory activities. The isoinhibitors separated by FPLC reacted with polyclonal antibody raised in rabbits and had pI values ranging from 4.8-5.1. The horsegram inhibitor thus resembles other Bowman-Birk protease inhibitors.  相似文献   

14.
Two kunitz-type proteinase inhibitors from potato tubers   总被引:4,自引:0,他引:4       下载免费PDF全文
Two proteinase inhibitors have been isolated from tubers of potato (Solanum tuberosum). Based on N-terminal amino acid sequence homologies, they are members of the Kunitz family of proteinase inhibitors. Potato Kunitz inhibitor-1 (molecular weight 19,500, isoelectric point 6.9) is a potent inhibitor of the animal pancreatic proteinase trypsin, and its amino terminus has significant homology to a recently characterized cathepsin D Kunitz inhibitor from potato tubers (Mares et al. [1989] FEBS Lett 251:94-98). Potato Kunitz inhibitor-2 (molecular weight 20,500, isoelectric point 8.6) is an inhibitor of the microbial proteinase subtilisin Carlsberg; its amino terminus is almost identical to an abundant 22 kilodalton protein from potato tubers (Suh et al. [1990] Plant Physiol 94:40-45) and has significant homology to other Kunitz-type subtilisin inhibitors from small grains. Both Kunitz inhibitors are abundant proteins of the cortex of potato tubers.  相似文献   

15.
Bromelain inhibitor (BI) is a cysteine proteinase inhibitor isolated from pineapple stem (Reddy, M. N., Keim, P. S., Heinrikson, R. L., and Kézdy, F. J. (1975) J. Biol. Chem. 250, 1741-1750). It consists of eight isoinhibitors, and each isoinhibitor has a two-chain structure. In this study, the genomic DNA has been cloned and found to encode a precursor protein with 246 amino acids (M(r) = approximately 27,500) containing three isoinhibitor domains (BI-III, -VI, and -VII) that are 93% identical to one another in amino acid sequences. The gene structure indicated that these isoinhibitors are produced by removal of the N-terminal pre-peptide (19 residues), 3 interchain peptides (each 5 residues), 2 interdomain peptides (each 19 residues), and the C-terminal pro-peptide (18 residues). Moreover, all the amino acid sequences of bromelain isoinhibitors could be explained by removal of one or two amino acids from BI-III, -VI, and -VII with exopeptidases. A recombinant single-chain BI-VI with and without the interchain peptide showed the same and no bromelain inhibitory activity as compared with the native BI-VI, respectively. These results indicate that the interchain peptide plays an important role of the folding process of the mature isoinhibitors.  相似文献   

16.
The complete amino acid sequence of barley trypsin inhibitor   总被引:5,自引:0,他引:5  
The amino acid sequence of barley trypsin inhibitor has been determined. The protein is a single polypeptide consisting of 121 amino acid residues and has Mr = 13,305. No free sulfhydryl groups were detected by Ellman's reagent, which indicates the presence of five disulfide bridges in the molecule. The primary site of interaction with trypsin was tentatively assigned to the arginyl-leucyl residues at positions 33 and 34. On comparison of the sequence of this inhibitor with those of other proteinase inhibitors, we found that the barley trypsin inhibitor could not be classified into any of the established families of proteinase inhibitors (Laskowski, M., Jr., and Kato, I. (1980) Annu. Rev. Biochem. 49, 593-626) and that this inhibitor should represent a new inhibitor family. On the other hand, this trypsin inhibitor showed a considerable similarity to wheat alpha-amylase inhibitor (Kashlan, N., and Richardson, M. (1981) Phytochemistry (Oxf.) 20, 1781-1784) throughout the whole sequence, suggesting a common ancestry for both proteins. This is the first case of a possible evolutionary relationship between two inhibitors directed to totally different enzymes, a proteinase and a glycosidase.  相似文献   

17.
A serine protease, named as "Milin" was purified to homogeneity from the latex of Euphorbia milii, a medicinal plant of Euphorbiaceae family. The molecular mass (SDS-PAGE), optimum pH and temperature of the enzyme were 51kDa, pH 8.0 and 60 degrees C, respectively. Milin retains full proteolytic activity over a wide range of pH (5.5-12) and temperature (up to 65 degrees C) with casein and azoalbumin as substrates. The activity of milin is inhibited by serine proteases inhibitors like PMSF, APMSF and DFP, but not by any other protease inhibitors such as E-64 and PCMB. Like the other serine proteases from the genus Euphorbia, the activity of milin was not inhibited by the proteinaceous inhibitor soyabean trypsin inhibitor (SBTI) even at very high concentrations that is naturally present in plants. The specific extinction coefficient (epsilon(280 nm)(1%)), molar extinction coefficient (a(m)) and isoelectric point of the enzyme were found to be 29, 152,500 M(-1) cm(-1) and pH 7.2, respectively. The enzyme is a glycoprotein with detectable carbohydrate moiety (7-8%) in its constitution, which is essential for the activity. The numbers of tryptophan, tyrosine and cysteine residues in the sequence of milin were estimated chemically and are 23, 14 and 14, respectively. Of the 14-cysteine residues, 12 constituted 6-disulfide linkages while two are free cysteines. The N-terminal sequence (first 12 amino acid residues) was determined and does not match with any sequence of known plant serine proteases. Perturbation studies by temperature, pH and chaotropes of the enzyme also reveal its high stability as seen by CD, fluorescence and proteolytic activity. Thus, this serine protease may have potential applications in food industry.  相似文献   

18.
A highly stable and potent trypsin inhibitor was purified to homogeneity from the seeds of Putranjiva roxburghii belonging to Euphorbiaceae family by acid precipitation, cation-exchange and anion-exchange chromatography. SDS-PAGE analysis, under reducing condition, showed that protein consists of a single polypeptide chain with molecular mass of approximately 34 kDa. The purified inhibitor inhibited bovine trypsin in 1:1 molar ratio. Kinetic studies showed that the protein is a competitive inhibitor with an equilibrium dissociation constant of 1.4x10(-11) M. The inhibitor retained the inhibitory activity over a broad range of pH (pH 2-12), temperature (20-80 degrees C) and in DTT (up to100 mM). The complete loss of inhibitory activity was observed above 90 degrees C. CD studies, at increasing temperatures, demonstrated the structural stability of inhibitor at high temperatures. The polypeptide backbone folding was retained up to 80 degrees C. The CD spectra of inhibitor at room temperature exhibited an alpha, beta pattern. N-terminal amino acid sequence of 10 residues did not show any similarities to known serine proteinase inhibitors, however, two peptides obtained by internal partial sequencing showed significant resemblance to Kunitz-type inhibitors.  相似文献   

19.
A member of the potato proteinase inhibitor II (PPI-II) gene family under the control of the cauliflower mosaic virus 35S promoter has been introduced into tobacco (Nicotiana tabacum). Purification of the PPI-II protein that accumulates in transgenic tobacco has confirmed that the N-terminal signal sequence is removed and that the inhibitor accumulates as a protein of the expected size (21 kD). However, a smaller peptide of approximately 5.4 kD has also been identified as a foreign gene product in transgenic tobacco plants. This peptide is recognized by an anti-PPI-II antibody, inhibits the serine proteinase chymotrypsin, and is not observed in nontransgenic tobacco. Furthermore, amino acid sequencing demonstrates that the peptide is identical to a lower molecular weight chymotrypsin inhibitor found in potato tubers and designated as potato chymotrypsin inhibitor I (PCI-I). Together, these data confirm that, as postulated to occur in potato, PCI-I does arise from the full-length PPI-II protein by posttranslational processing. The use of transgenic tobacco represents an ideal system with which to determine the precise mechanism by which this protein modification occurs.  相似文献   

20.
Nine proteinase inhibitors, I-VIIa, VIIb, and VIII, were isolated from wild soja seeds by ammonium sulfate fractionation and successive chromatographies on SP-Toyopearl 650M, Sephacryl S-200SF, and DEAE-Toyopearl 650S columns. Reverse-phase HPLC finally gave pure inhibitors. All of the inhibitors inhibited trypsin with dissociation constants of 3.2-6.2×10-9 M. Some of the inhibitors inhibited chymotrypsin and elastase as well. Two inhibitors (VIIb and VIII) with a molecular weight of 20,000 were classified as a soybean Kunitz inhibitor family. Others (I-VIIa) had a molecular weight of about 8,000, and were stable to heat and extreme pH, suggesting that these belonged to the Bowman-Birk inhibitor family. Partial amino acid sequences of four inhibitors were also analyzed. The complete sequence of inhibitor IV was ascertained from the nucleotide sequences of cDNA clones encoding isoinhibitors homologous to soybean C-II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号