首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Wild-type p53 is a conformationally labile protein that undergoes nuclear-cytoplasmic shuttling. MDM2-mediated ubiquitination promotes p53 nuclear export by exposing or activating a nuclear export signal (NES) in the C terminus of p53. We observed that cancer-derived p53s with a mutant (primary antibody 1620-/pAb240+) conformation localized in the cytoplasm to a greater extent and displayed increased susceptibility to ubiquitination than p53s with a more wild-type (primary antibody 1620+/pAb240-) conformation. The cytoplasmic localization of mutant p53s required the C-terminal NES and an intact ubiquitination pathway. Mutant p53 ubiquitination occurred at lysines in both the DNA-binding domain (DBD) and C terminus. Interestingly, Lys to Arg mutations that inhibited ubiquitination restored nuclear localization to mutant p53 but had no apparent effect on p53 conformation. Further studies revealed that wild-type p53, like mutant p53, is ubiquitinated by MDM2 in both the DBD and C terminus and that ubiquitination in both regions contributes to its nuclear export. MDM2 binding can induce a conformational change in wild-type p53, but this conformational change is insufficient to promote p53 nuclear export in the absence of MDM2 ubiquitination activity. Taken together, these results support a stepwise model for mutant and wild-type p53 nuclear export. In this model, the conformational change induced by either the cancer-derived mutation or MDM2 binding precedes p53 ubiquitination. The addition of ubiquitin to DBD and C-terminal lysines then promotes nuclear export via the C-terminal NES.  相似文献   

2.
It has been demonstrated that MDM2 can differentially regulate subcellular distribution of p53 and its close structural homologue p73. In contrast to MDM2-mediated p53 nuclear export, p73 accumulates in the nucleus as aggregates that colocalize with MDM2. Distinct distribution patterns of p53 and p73 suggest the existence of unique structural elements in the two homologues that determine their MDM2-mediated relocalization in the cell. Using a series of p53/p73 chimeric proteins, we demonstrate that three regions of p53 are involved in the regulation of MDM2-mediated nuclear export. The DNA binding domain (DBD) is involved in the maintenance of a proper conformation that is required for functional activity of the nuclear export sequence (NES) of p53. The extreme C terminus of p53 harbors several lysine residues whose ubiquitination by MDM2 appears to be the initial event in p53 nuclear export, as evidenced by the impaired nucleocytoplasmic shuttling of p53 mutants bearing simultaneous substitutions of lysines 370, 372, 373, 381, 382, and 386 to arginines (6KR) or alanines (6KA). Finally, the region between the DBD and the oligomerization domain of p53, specifically lysine 305, also plays a critical role in fully revealing p53NES. We conclude that MDM2-mediated nuclear export of p53 depends on a series of ubiquitination-induced conformational changes in the p53 molecule that lead to the activation of p53NES. In addition, we demonstrate that the p53NES may be activated without necessarily disrupting the p53 tetramer.  相似文献   

3.
The product of the Mdm2 oncogene directly interacts with p53 and promotes its ubiquitination and proteasomal degradation. Initial biological studies identified nuclear export sequences (NES), similar to that of the Rev protein from the human immunodeficiency virus, both in Mdm2 and p53. The reported phenotypes resulting from mutation of these NESs, together with results obtained using the nuclear export inhibitor leptomycin B (LMB), have led to a model according to which nuclear export of p53 (via either the NES of Mdm2 or its own NES) is required for efficient p53 degradation. In this study we demonstrate that Mdm2 can promote degradation of p53 in the nucleus or in the cytoplasm, provided both proteins are colocalized. We also investigated if nuclear export is an obligate step on the p53 degradation pathway. We find that (1) when proteasome activity is inhibited, ubiquitinated p53 accumulates in the nucleus and not in the cytoplasm; (2) Mdm2 with a mutated NES can efficiently mediate degradation of wild type p53 or p53 with a mutated NES; (3) the nuclear export inhibitor LMB can increase the steady-state level of p53 by inhibiting Mdm2-mediated ubiquitination of p53; and (4) LMB fails to inhibit Mdm2-mediated degradation of the p53NES mutant, demonstrating that Mdm2-dependent proteolysis of p53 is feasible in the nucleus in the absence of any nuclear export. Therefore, given cocompartmentalization, Mdm2 can promote ubiquitination and proteasomal degradation of p53 with no absolute requirement for nuclear to cytoplasmic transport.  相似文献   

4.
MDM2 can bind the N terminus of p53 and promote its ubiquitination and export from the nucleus to the cytoplasm, where p53 can then be degraded by cytoplasmic proteasomes. Several studies have reported that an intact MDM2 binding domain is necessary for p53 to be targeted for ubiquitination, nuclear export, and degradation by MDM2. In the current study, we examined whether the MDM2 binding domain of p53 could be provided in trans through oligomerization between two p53 molecules. p53 proteins mutated in their MDM2 binding domains were unable to bind MDM2 directly and were resistant to MDM2-mediated ubiquitination, nuclear export, and degradation when expressed with MDM2 alone. However, these same p53 mutants formed a complex with MDM2 and were efficiently ubiquitinated, exported from the nucleus, and degraded when co-expressed with MDM2 and wild-type p53. Moreover, this effect required MDM2 binding by wild-type p53 as well as oligomerization between wild-type p53 and the MDM2 binding-deficient p53 mutants. Taken together, these results support a model whereby MDM2 binding-deficient forms of p53 can bind MDM2 indirectly through oligomerization with wild-type p53 and are subsequently targeted for ubiquitination, nuclear export, and degradation. These findings may have important implications regarding the DNA damage response of p53.  相似文献   

5.
p53 functions to prevent malignant progression, in part by inhibiting proliferation or inducing the death of potential tumour cells. One of the most important regulators of p53 is MDM2, a RING domain E3 ligase that ubiquitinates p53, leading to both proteasomal degradation and relocation of p53 from the nucleus to the cytoplasm. Previous studies have suggested that although polyubiquitination is required for degradation, monoubiquitination of p53 is sufficient for nuclear export. Using a p53-ubiquitin fusion protein we show that ubiquitination contributes to two steps before export: exposure of a carboxy-terminal nuclear export sequence (NES), and dissociation of MDM2. Monoubiquitination can directly promote further modifications of p53 with ubiquitin-like proteins and MDM2 promotes the interaction of the SUMO E3 ligase PIASy with p53, enhancing both sumoylation and nuclear export. Our results suggest that modifications such as sumoylation can regulate the strength of the p53-MDM2 interaction and participate in driving the export of p53.  相似文献   

6.
As a shuttling protein, p53 is constantly transported through the nuclear pore complex. p53 nucleocytoplasmic transport is carried out by a bipartite nuclear localization signal (NLS) located at its C-terminal domain and two nuclear export signals (NES) located in its N- and C-terminal regions, respectively. The role of nucleocytoplasmic shuttling in p53 ubiquitination and degradation has been a subject of debate. Here we show that the two basic amino acid groups in the p53 bipartite NLS function collaboratively to import p53. Mutations disrupting individual amino acids in the NLS, although causing accumulation of p53 in the cytoplasm to various degrees, reduce but do not eliminate the NLS activity, and these mutants remain sensitive to MDM2 degradation. However, disrupting both parts of the bipartite NLS completely blocks p53 from entering the nucleus and causes p53 to become resistant to MDM2-mediated degradation. Similarly, mutations disrupting four conserved hydrophobic amino acids in the p53 C-terminal NES block p53 export and prohibit it from MDM2 degradation. We also show that colocalization of a nonshuttling p53 with MDM2 either in the nucleus or in the cytoplasm is sufficient for MDM2-induced p53 polyubiquitination but not degradation. Our data provide new insight into the mechanism and regulation of p53 nucleocytoplasmic shuttling and degradation.  相似文献   

7.
The basal level of the tumor suppressor p53 is regulated by MDM2-mediated ubiquitination at specific lysines, which leads to p53 nuclear export and degradation. Upon p53 activation, however, these lysines become acetylated by p300/CREB-binding protein. Here we have reported an unexpected finding that p300-mediated acetylation also regulates p53 subcellular localization and can promote cytoplasmic localization of p53. This activity is independent of MDM2 but requires a p53 nuclear export signal and acetylation of multiple lysines by p300. Mechanistically, we showed that conversion of a minimal four of these lysines to alanines but not arginines mimics p300-mediated p53 nuclear export, and these lysine-neutralizing mutations effectively prevent p53 tetramerization, thus exposing the oligomerization-regulated nuclear export signal. Our study suggested a threshold mechanism whereby the degree of acetylation regulates p53 nucleus-cytoplasm trafficking by neutralizing a lysine-dependent charge patch, which in turn, controls oligomerization-dependent p53 nuclear export.  相似文献   

8.
MDM2 is an E3 ubiquitin ligase that targets p53 for proteasomal degradation. Recent studies have shown, however, that the ring-finger domain (RFD) of MDM2, where the ubiquitin E3 ligase activity resides, is necessary but not sufficient for p53 ubiquitination, suggesting that an additional activity of MDM2 might be required. To test this possibility, we generated a series of MDM2/MDMX chimeric proteins to assess the contribution of each domain of MDM2 to the ubiquitination process. MDMX is a close structural homolog of MDM2 that nevertheless lacks the E3 ligase activity in vivo. We demonstrate here that MDMX gains self-ubiquitination activity and becomes extremely unstable upon introduction of the MDM2 RFD, indicating that the RFD is essential for self-ubiquitination. This MDMX chimeric protein, however, is unable to ubiquitinate p53 in vivo despite its E3 ligase activity and binding to p53, separating the self-ubiquitination activity of MDM2 from its ability to ubiquitinate p53. Significantly, fusion of the central acidic domain (AD) of MDM2 to the MDMX chimeric protein renders the protein fully capable of ubiquitinating p53, and p53 ubiquitination is associated with p53 degradation and nuclear export. Moreover, the AD mini protein expressed in trans can functionally rescue the AD-lacking MDM2 mutant, further supporting a critical role for the AD in MDM2-mediated p53 ubiquitination.  相似文献   

9.
MDM2 promotes ubiquitination and degradation of MDMX   总被引:1,自引:0,他引:1       下载免费PDF全文
The p53 tumor suppressor is regulated by MDM2-mediated ubiquitination and degradation. Mitogenic signals activate p53 by induction of ARF expression, which inhibits p53 ubiquitination by MDM2. Recent studies showed that the MDM2 homolog MDMX is also an important regulator of p53. We present evidence that MDM2 promotes MDMX ubiquitination and degradation by the proteasomes. This effect is stimulated by ARF and correlates with the ability of ARF to bind MDM2. Promotion of MDM2-mediated MDMX ubiquitination requires the N-terminal domain of ARF, which normally inhibits MDM2 ubiquitination of p53. An intact RING domain of MDM2 is also required, both to interact with MDMX and to provide E3 ligase function. Increase of MDM2 and ARF levels by DNA damage, recombinant ARF adenovirus infection, or inducible MDM2 expression leads to proteasome-mediated down-regulation of MDMX levels. Therefore, MDMX and MDM2 are coordinately regulated by stress signals. The ARF tumor suppressor differentially regulates the ability of MDM2 to promote p53 and MDMX ubiquitination and activates p53 by targeting both members of the MDM2 family.  相似文献   

10.
C-Terminal Ubiquitination of p53 Contributes to Nuclear Export   总被引:9,自引:0,他引:9       下载免费PDF全文
The growth inhibitory functions of p53 are controlled in unstressed cells by rapid degradation of the p53 protein. One of the principal regulators of p53 stability is MDM2, a RING finger protein that functions as an E3 ligase to ubiquitinate p53. MDM2 promotes p53 nuclear export, and in this study, we show that ubiquitination of the C terminus of p53 by MDM2 contributes to the efficient export of p53 from the nucleus to the cytoplasm. In contrast, MDM2 did not promote nuclear export of the p53-related protein, p73. p53 nuclear export was enhanced by overexpression of the export receptor CRM1, although no significant relocalization of MDM2 was seen in response to CRM1. However, nuclear export driven by CRM1 overexpression did not result in the degradation of p53, and nuclear export was not essential for p53 degradation. These results indicate that MDM2 mediated ubiquitination of p53 contributes to both nuclear export and degradation of p53 but that these activities are not absolutely dependent on each other.  相似文献   

11.
12.
Regulation of p53 and MDM2 activity by MTBP   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

13.
To investigate the effect of mutations in the p53 C-terminal domain on MDM2-mediated degradation, we introduced single and multiple point mutations into a human p53 cDNA at four putative acetylation sites (amino acid residues 372, 373, 381, and 382). Substitution of all four lysine residues by alanines (the A4 mutant) and single lysine-to-alanine substitutions were functional in sequence-specific DNA binding and transactivation; however, the A4 mutant protein was resistant to MDM2-mediated degradation, whereas the single lysine substitutions were not. Although the A4 mutant protein and the single lysine substitutions both bound MDM2 reasonably well, the single lysine substitutions underwent normal MDM2-dependent ubiquitination, whereas the A4 protein was inefficiently ubiquitinated. In addition, the A4 mutant protein was found in the cytoplasm as well as in the nucleus of a subpopulation of cells, unlike wild-type p53, which is mostly nuclear. The partially cytoplasmic distribution of A4 mutant protein was not due to a defect in nuclear import because inhibition of nuclear export by leptomycin B resulted in nuclear accumulation of the protein. Taken together, the data suggest that mutations in the putative acetylation sites of the p53 C-terminal domain interfere with ubiquitination, thereby regulating p53 degradation.  相似文献   

14.
The p53 tumour-suppressor protein is negatively regulated by HDM2. Recent reports indicate that the leucine-rich nuclear-export sequence (NES) of HDM2 enables it to shuttle to the cytoplasm, and that this activity is required for degradation of p53. However, it is unclear whether HDM2 is involved in nuclear export of p53, partly because p53 has itself been shown to contain a functional NES within its tetramerization domain. Here we show that co-expression of HDM2 with green fluorescent protein (GFP)-tagged p53 causes redistribution of p53 from the nucleus to the cytoplasm of the cell. This activity is dependent on binding of p53 to HDM2, and requires an intact p53 NES, but is independent of the HDM2 NES. A mutant of the HDM2 RING-finger domain that is unable to ubiquitinate p53 does not cause relocalization of p53, indicating that ubiquitin ligation or other activities of this region of HDM2 may be necessary for its regulation of p53 localization.  相似文献   

15.
16.
The E6 protein from high-risk human papillomaviruses (HPVs) targets the p53 tumor suppressor for degradation by the proteasome pathway. This ability contributes to the oncogenic potential of these viruses. However, several aspects concerning the mechanism of E6-mediated p53 degradation at the cellular level remain to be clarified. This study therefore examined the role of cell localization and ubiquitination in the E6-mediated degradation of p53. As demonstrated within, following coexpression both p53 and high-risk HPV type 18 (HPV-18) E6 (18E6) shuttle from the nucleus to the cytoplasm. Mutation of the C-terminal nuclear export signal (NES) of p53 or treatment with leptomycin B inhibited the 18E6-mediated nuclear export of p53. Impairment of nuclear export resulted in only a partial reduction in 18E6-mediated degradation, suggesting that both nuclear and cytoplasmic proteasomes can target p53 for degradation. This was also consistent with the observation that 18E6 mediated the accumulation of polyubiquitinated p53 in the nucleus. In comparison, a p53 isoform that localizes predominantly to the cytoplasm was not targeted for degradation by 18E6 in vivo but could be degraded in vitro, arguing that nuclear p53 is the target for E6-mediated degradation. This study supports a model in which (i) E6 mediates the accumulation of polyubiquitinated p53 in the nucleus, (ii) E6 is coexported with p53 from the nucleus to the cytoplasm via a CRM1 nuclear export mechanism involving the C-terminal NES of p53, and (iii) E6-mediated p53 degradation can be mediated by both nuclear and cytoplasmic proteasomes.  相似文献   

17.
Inhibition of the MDM2-p53 feedback loop is critical for p53 activation in response to cellular stresses. The ribosomal proteins L5, L11, and L23 can block this loop by inhibiting MDM2-mediated p53 ubiquitination and degradation in response to ribosomal stress. Here, we show that L11, but not L5 and L23, leads to a drastic accumulation of ubiquitinated and native MDM2. This effect is dependent on the ubiquitin ligase activity of MDM2, but not p53, and requires the central MDM2 binding domain (residues 51-108) of L11. We further show that L11 inhibited 26 S proteasome-mediated degradation of ubiquitinated MDM2 in vitro and consistently prolonged the half-life of MDM2 in cells. These results suggest that L11, unlike L5 and L23, differentially regulates the levels of ubiquitinated p53 and MDM2 and inhibits the turnover and activity of MDM2 through a post-ubiquitination mechanism.  相似文献   

18.
p53 protein conformation is an important determinant of its localization and activity. Changes in p53 conformation can be monitored by reactivity with wild-type conformation-specific (pAb-1620) or mutant conformation-specific (pAb-240) p53 antibodies. Wild-type p53 accumulated in a mutant (pAb-240 reactive) form when its proteasome-dependent degradation was blocked during recovery from stress treatment and in cells co-expressing p53 and MDM2. This suggests that conformational change precedes wild-type p53 degradation by the proteasome. MDM2 binding to the p53 N terminus could induce a conformational change in wild-type p53. Interestingly, this conformational change was opposed by heat-shock protein 90 and did not require the MDM2 RING-finger domain and p53 ubiquitination. Finally, ubiquitinated p53 accumulated in a pAb-240 reactive form when p53 degradation was blocked by proteasome inhibition, and a p53-ubiquitin fusion protein displayed a mutant-only conformation in MDM2-null cells. These results support a model in which MDM2 binding induces a conformational change that is opposed by heat-shock protein 90 and precedes p53 ubiquitination. The covalent attachment of ubiquitin may "lock" p53 in a mutant conformation in the absence of MDM2-binding and prior to its degradation by the proteasome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号