首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have observed repeated patterns in evoked spike trains recorded from the primary visual cortex of the cat. These patterns are called "triplets" and "ghost doublets". Triplets are groups of three pulses, that may or may not be adjacent to one other, the mutual intervals of which are replicated in one other group of three spikes with a precision higher than 0.15 ms. Ghost doublets are doublets of pulses whose interval replicates, with the above precision, one of the intervals of the repeated triplets and are also present in the record. In one of the 9 recorded cells, in which pulses were clearly emitted in bursts in phase with the drifting of the sinusoidal grating used as a stimulus, we could show that local temporal correlations in the form of replicating triplets and ghost doublets correspond very precisely to the temporal phase of the grating: the study of the distance between triplets, or between triplets and ghost doublets, gives a remarkably precise value of the time frequency of the grating.  相似文献   

2.
Neuronal cortical spike trains contain precisely replicating patterns whose presence cannot be accounted for by chance production. A comparison of the number of triplets of spikes present two times with the number of doublets replicated three times in the same window duration gives a frequency-insensitive measure of this type of fine temporal organisation. By varying the tolerance with which such precisely replicating patterns are detected, one can evaluate the accuracy of spike timing in spike trains. In the sample of data here analysed, it was found that replicating patterns were best seen in the precision range 0.4–1.4 ms (a result evidently at variance with a simple ‘integrate and fire’ model of neurons). Surprisingly, the fine temporal structure of spike trains thus evidenced was stronger at relatively low firing rate discharges and was present in both the ‘spontaneous’ and ‘evoked’ responses.  相似文献   

3.
 Neuronal cortical spike trains contain precisely replicating patterns whose presence cannot be accounted for by chance production. A comparison of the number of triplets of spikes present two times with the number of doublets replicated three times in the same window duration gives a frequency-insensitive measure of this type of fine temporal organisation. By varying the tolerance with which such precisely replicating patterns are detected, one can evaluate the accuracy of spike timing in spike trains. In the sample of data here analysed, it was found that replicating patterns were best seen in the precision range 0.4–1.4 ms (a result evidently at variance with a simple ‘integrate and fire’ model of neurons). Surprisingly, the fine temporal structure of spike trains thus evidenced was stronger at relatively low firing rate discharges and was present in both the ‘spontaneous’ and ‘evoked’ responses. Received: 3 April 1995/Accepted in revised form: 11 July 1995  相似文献   

4.
We propose a model for the neuronal implementation of selective visual attention based on temporal correlation among groups of neurons. Neurons in primary visual cortex respond to visual stimuli with a Poisson distributed spike train with an appropriate, stimulus-dependent mean firing rate. The spike trains of neurons whose receptive fields donot overlap with the focus of attention are distributed according to homogeneous (time-independent) Poisson process with no correlation between action potentials of different neurons. In contrast, spike trains of neurons with receptive fields within the focus of attention are distributed according to non-homogeneous (time-dependent) Poisson processes. Since the short-term average spike rates of all neurons with receptive fields in the focus of attention covary, correlations between these spike trains are introduced which are detected by inhibitory interneurons in V4. These cells, modeled as modified integrate-and-fire neurons, function as coincidence detectors and suppress the response of V4 cells associated with non-attended visual stimuli. The model reproduces quantitatively experimental data obtained in cortical area V4 of monkey by Moran and Desimone (1985).  相似文献   

5.
We analysed evoked responses recorded from 97 cells in the visual cortex of 4 adult cats and 8 kittens, stimulated by a drifting sinusoidal grating. A Fourier analysis of the responses allowed us to select 30 cells showing a clear modulating response (relative modulation index > 1). The 162 records from these selected cells were scanned to detect precise temporal correlations in the form of replicating triplets and associated ghost doublets. Temporal correlations of this nature were observed in these cells. They are about 10 times more abundant in adult cats than in kittens, and mostly observed in infragranular cortical layer cells. The possible role of these precise temporal patterns in information processing in the brain is examined, as well as the relation between this type of temporal correlation with coherent oscillations and principal components waveforms.  相似文献   

6.
This paper builds on the past study of single-spike waves in one-dimensional integrate-and-fire networks to provide a framework for the study of waves with arbitrary (finite or countably infinite) collections of spike times. Based on this framework, we prove an existence theorem for single-spike traveling waves, and we combine analysis and numerics to study two-spike traveling waves, periodic traveling waves, and general infinite spike trains. For a fixed wave speed, finite-spike waves, periodic waves, and other infinite-spike waves may all occur, and we discuss the relationships among them. We also relate the waves considered analytically to waves generated in numerical simulations by the transient application of localized excitation.Key words or phrases:Traveling waves, Integrate-and-fire network, Excitatory synaptic coupling  相似文献   

7.
Summary Different synaptic terminals of the single excitor axon to the opener muscle of crayfish (Procambarus clarkii) often release transmitter in a very different manner when stimulated with the same equal-interval, doublet, or triplet patterns. Compared to synapses that show little facilitation (low Fe synapses), highly facilitating (high Fe) synapses show greater percentage increases in several measures of synaptic efficacy when stimulated with any of these patterns. Low Fe synapses usually show the greater absolute changes in these measures of synaptic efficacy. Changes in the span and pattern of doublets and triplets can independently affect both pre- and postsynaptic measures of synaptic efficacy at either low Fe or high Fe synapses.Abbreviations EJP excitatory junctional potential - MJP spontaneous miniature EJP - F e ratio of EJP at 1 Hz to EJP amplitude at 10 Hz - F 1 zero-time facilitation - A 2,B 2,C 2 doubly corrected EJP amplitude of a particular pulse - average amplitude of doubly corrected EJPs in a train of equal-interval, doublets, and triplets, respectively - Am, Bm, Cm maximum depolarization reached by a particular EJP - time constant of decay  相似文献   

8.
The general properties of the excitable membrane on molluscan pacemaker neurons can be described on the basis of a fair amount of experimental evidence available in the literature. The neuronal membrane exhibits under voltage clamp an initial inward current carried by both Na+ and Ca2+ ions, the time- and voltage-dependent characteristics of which are similar to that of other excitable structures. The conductance mechanism for the two ion species and the transport kinetics appear to be closely similar. The time course and amplitude of the delayed outward current carried by K+ ions shows a marked dependence on the membrane potential. Characteristic for the molluscan neurons is the existence of an additional fast transient outward current which is only activated by hyperpolarizing shifts from the membrane potential. A regular beating discharge over a wide range of frequencies can be predicted by making the assumption of a metabolically controlled driving of the Na+ conductance. Bursting pacemaker characteristics can be correctly simulated by the model if sinusoidal variations of an additional Na+ and Ca2+ conductances g Na and g Ca, and periodic variations of the K+ conductance g K, governed by the known operation of a metabolic substrate cycle are introduced. The close approximation of experimentally observed impulse bursts requires that the actual inpulse-frequency and the amplitude of the after-spike hyperpolarization are determined by the temporal pattern of g Na, while the spike amplitude is controlled by g Na which (although of similar time course) is lagging in phase behing g Na. The periodic changes in additional K+ conductance g K, are responsible for burst termination and the changes in inter-burst interval, to the effect that spike doublets, triplets and multi-spike bursts can be simulated by a suitable choice for the time characteristics of g K. The model makes use of the finding that the Ca2+ inflow associated with a spike discharge actually activates g K, so that large postburst hyperpolarizations can be obtained in high-frequency bursts.Supported by the Deutsche Forschungsgemeinschaft (Grant Ch 25/1)  相似文献   

9.

Background

Alpha motoneurons receive common synaptic inputs from spinal and supraspinal pathways. As a result, a certain degree of correlation can be observed between motoneuron spike trains during voluntary contractions. This has been studied by using correlation measures in the time and frequency domains. These measures are interpreted as reflecting different types of connectivity in the spinal networks, although the relation between the degree of correlation of the output motoneuron spike trains and of their synaptic inputs is unclear.

Methodology/Principal Findings

In this study, we analyze theoretically this relation and we complete this analysis by simulations and experimental data on the abductor digiti minimi muscle. The results demonstrate that correlation measures between motoneuron output spike trains are inherently influenced by the discharge rate and that this influence cannot be compensated by normalization. Because of the influence of discharge rate, frequency domain measures of correlation (coherence) do not identify the full frequency content of the common input signal when computed from pairs of motoneurons. Rather, an increase in sampling rate is needed by using cumulative spike trains of several motoneurons. Moreover, the application of averaging filters to the spike trains influences the magnitude of the estimated correlation levels calculated in the time, but not in the frequency domain (coherence).

Conclusions

It is concluded that the analysis of coherence in different frequency bands between cumulative spike trains of a sufficient number of motoneurons provides information on the spectrum of the common synaptic input. Nonetheless, the absolute values of coherent peaks cannot be compared across conditions with different cumulative discharge rates.  相似文献   

10.
11.
The pooled spike trains of correlated presynaptic terminals acting synchronously upon a single neuron are realizations of cluster point processes: the notions of spikes synchronizing in bursts and of points bunching in clusters are conceptually identical. The primary processes constituent specifies the timing of the cluster series; subsidiary processes and poolings specify burst structure and tightness. This representation and the Poisson process representation of independent terminals complete the formal approach to pooled trains. The notions usefulness was illustrated by expressing physiological questions in terms of those constituents, each possessing a clear biological embodiment; constituents provided the control variables in simulations using leaky integrate-and-fire postsynaptic neurons excited by multiple weak terminals. Regular or irregular primary processes and bursts series determined low or high postsynaptic dispersions. When convergent set synchrony increased, its postsynaptic consequences approached those of single powerful synapses; concomitantly, output spike trains approached periodic, quasiperiodic, or aperiodic behaviors. The sequence in which terminals fired within bursts affected the predictee and predictor roles of presynaptic and postsynaptic spikes; when inhibition was added, EPSP and IPSP delays and order were influential (summation was noncommutative). Outputs to different correlations were heterogeneous; heterogeneity was accentuated by conditioning by variables such as DC biases.  相似文献   

12.
We propose a new retina simulation software, called Virtual Retina, which transforms a video into spike trains. Our goal is twofold: Allow large scale simulations (up to 100,000 neurons) in reasonable processing times and keep a strong biological plausibility, taking into account implementation constraints. The underlying model includes a linear model of filtering in the Outer Plexiform Layer, a shunting feedback at the level of bipolar cells accounting for rapid contrast gain control, and a spike generation process modeling ganglion cells. We prove the pertinence of our software by reproducing several experimental measurements from single ganglion cells such as cat X and Y cells. This software will be an evolutionary tool for neuroscientists that need realistic large-scale input spike trains in subsequent treatments, and for educational purposes.
Pierre Kornprobst (Corresponding author)Email:
  相似文献   

13.
Using several techniques of statistical analysis, we studied in detail the extracellularly recorded background impulse activity (BA) of neuronal elements of the rat locus coeruleus (LC). Impulse trains generated by most LC neurons were stationary and demonstrated different levels of regularity; a nonstationary type of BA was observed in 17% of the neurons under study. Statistical parameters of the BA generated by LC neurons showed a wide variability. Distributions of the BA interspike intervals (ISI) of most LC neurons were characterized by more or less expressed bimodality or polymodality. Serial correlation analysis of the ISI durations both in stationary and nonstationary spike trains allowed us to differentiate five main types of the dynamics of ISI successions in the BA of LC neurons.  相似文献   

14.
In response to a visual stimulation, "replicated triplets" of impulses may appear in many spike trains recorded from the cat dorsal lateral geniculate nucleus (dLGN). The number and the temporal structure of these triplets depend upon the general organization of the geniculate impulse trains. In this study, we show that a pharmacological blockade of the corticothalamic activity, obtained through microinjection of GABA into area 17, affects the replicated triplet production and leads to an increase in the dispersal of their structure. These results suggest that the corticothalamic pathway closely influences the fine temporal organization of the geniculate messages.  相似文献   

15.
Résumé La jeune spermatide possède un noyau arrondi, un diplosome proche de la membrane cellulaire auquel sont associées des formations paracentriolaires; une mitochondrie unique est disposée entre le diplosome et le noyau.Au cours de l'évolution de la spermatide, le noyau s'allonge latéralement, son grand axe étant perpendiculaire à l'axe flagellaire; la mitochondrie migre à l'extrémité latérale du noyau; le centriole distal donne un flagelle de type 9+0; le centriole proximal se prolonge le long du noyau puis sort de la cellule sous la forme d'un pseudo-flagelle. Le prolongement centriolaire est constitué de triplets classiques et de doublets d'un type particulier que nous avons appelés «doublets A–C».Les auteurs signalent la similitude des spermatozoïdes de cet Elopiforme avec les spermatozoïdes d'Anguilliformes ce qui serait en faveur de la proposition de Greenwood et al. de rassembler ces téléostéens dans le super-ordre des Elopomorphes.
The spermiogenesis of Albula vulpes (L. 1758) (albulidae fish)
Summary The early spermatid possesses a round nucleus and a diplosome which is close to the cellular membrane and with which paracentriolar formations are associated; a sole mitochondrion is located between the diplosome and the nucleus.During the spermatid evolution, the nucleus is laterally elongated, its main axis being perpendicular to the flagellar axis; the mitochondrion migrates towards the lateral end of the nucleus; the distal centriole is extended along the nucleus, then leaves the cell as a pseudoflagellum. This centriolar extension is made up of regular triplets and of a particular type of doublets that we have called A–C doublets.The authors call attention to the similarity between the spermatozoa of this Elopiforme and the spermatozoa of the Anguilliformes. This observation favours Greenwood et al.'s proposition, to place these teleost into the super-order of Elopomorpha.
Les auteurs tiennent à remercier Mr. C. Chauve et Mr. J.-N. Roy pour leur collaboration.  相似文献   

16.
Chaos and synchrony in a model of a hypercolumn in visual cortex   总被引:2,自引:0,他引:2  
Neurons in cortical slices emit spikes or bursts of spikes regularly in response to a suprathreshold current injection. This behavior is in marked contrast to the behavior of cortical neurons in vivo, whose response to electrical or sensory input displays a strong degree of irregularity. Correlation measurements show a significant degree of synchrony in the temporal fluctuations of neuronal activities in cortex. We explore the hypothesis that these phenomena are the result of the synchronized chaos generated by the deterministic dynamics of local cortical networks. A model of a hypercolumn in the visual cortex is studied. It consists of two populations of neurons, one inhibitory and one excitatory. The dynamics of the neurons is based on a Hodgkin-Huxley type model of excitable voltage-clamped cells with several cellular and synaptic conductances. A slow potassium current is included in the dynamics of the excitatory population to reproduce the observed adaptation of the spike trains emitted by these neurons. The pattern of connectivity has a spatial structure which is correlated with the internal organization of hypercolumns in orientation columns. Numerical simulations of the model show that in an appropriate parameter range, the network settles in a synchronous chaotic state, characterized by a strong temporal variability of the neural activity which is correlated across the hypercolumn. Strong inhibitory feedback is essential for the stabilization of this state. These results show that the cooperative dynamics of large neuronal networks are capable of generating variability and synchrony similar to those observed in cortex. Auto-correlation and cross-correlation functions of neuronal spike trains are computed, and their temporal and spatial features are analyzed. In other parameter regimes, the network exhibits two additional states: synchronized oscillations and an asynchronous state. We use our model to study cortical mechanisms for orientation selectivity. It is shown that in a suitable parameter regime, when the input is not oriented, the network has a continuum of states, each representing an inhomogeneous population activity which is peaked at one of the orientation columns. As a result, when a weakly oriented input stimulates the network, it yields a sharp orientation tuning. The properties of the network in this regime, including the appearance of virtual rotations and broad stimulus-dependent cross-correlations, are investigated. The results agree with the predictions of the mean field theory which was previously derived for a simplified model of stochastic, two-state neurons. The relation between the results of the model and experiments in visual cortex are discussed.  相似文献   

17.
The order and the values of Markov properties of nonstationary stochastic processes are inferred by the use of them-th order Markov value and simplified dependency, respectively: and HereK=0.5log2 e, and is the correlation coefficient determinant obtained from the ensemble averages of sample records. When an observed value is greater than or equal to the critical value,, the null hypothesis of the (m-1)th order,, is rejected at the level of significance . Here 1 2 () is the chi-square value with one degree of freedom at andN is sample size. With these statistics it was shown that the order and the values of Markov properties of spike trains of optic tractX- andY-fibers became higher and larger, respectively, after the light spot presentation; and that the values due to negative correlation came to increase and returned to the maintained level earlier inY-fibers than inX-fibers, while the maximum values forX-fibers continued to the light off. It is discussed that Markov properties of spike trains of optic tract fibers in the visual pathway seem to constitute a significant component of the neural information code.  相似文献   

18.
Summary It has previously been shown that the formation of GU base pairs in RNA copying processes leads to an accumulation of G and U in both strands of the replicating RNA, which results in a non-random distribution of base triplets. In the present paper, this distribution is calculated, and, using the 2-test, a correlation between the distribution of triplets and the amino acid composition of the evolutionarily conservative interior regions of selected globular proteins is established.It is suggested that GU wobbling in early replication of RNA could have led to the observed amino acid composition of present-day protein interiors. If this hypothesis is correct, the GU wobbling must have been very extensive in the imprecisely replicating RNA, even reaching values close to the critical for stability of its double-helical structure. Implications of the hypothesis both for the evolution of the genetic code and of proteins are discussed.  相似文献   

19.
Antibodies directed against purified human erythrocyte Ca2+-ATPase (purified according to a procedure modified from V. Niggli, J. T. Penniston, and E. Carafoli, 1979, J. Biol. Chem., 254, 9955–9958) were raised in rabbits. In competitive radioimmunoassay tests of immunological cross-reactivity, human erythrocyte Ca2+-ATPase shows a consistent pattern of immunological similarity to the Ca2+-ATPases derived from cell surface fractions of other species, such as rat and dog erythrocyte ghosts, rat corpus luteum plasma membranes, and rat brain synaptic plasma membranes. On the other hand, a purified Ca2+-ATPase preparation from rabbit skeletal muscle sarcoplasmic reticulum failed to show any immunological similarity to the human enzyme. The amount of Ca2+-ATPase protein in the erythrocyte ghosts was estimated to be about 0.6 μg/mg ghost protein, which was not too different from the calculated value of 1.2 ± 0.2 μg/mg ghost protein (mean ± SD, n = 6) based on the calmodulin binding studies of the erythrocyte ghosts. Anti-Ca2+-ATPase immunoglobulin G inhibited enzyme activity and calcium transport, showing that at least one subpopulation of antibodies can block the active site of the enzyme. The antibodies had no effect on the binding of calmodulin to erythrocyte membranes.  相似文献   

20.
Role of the bilayer in the shape of the isolated erythrocyte membrane   总被引:1,自引:0,他引:1  
Summary The determinants of cell shape were explored in a study of the crenation (spiculation) of the isolated erythrocyte membrane. Standard ghosts prepared in 5mm NaPi (pH 8) were plump, dimpled disks even when prepared from echinocytic (spiculated) red cells. These ghosts became crenated in the presence of isotonic saline, millimolar levels of divalent cations, 1mm 2,4-dinitrophenol or 0.1mm lysolecithin. Crenation was suppressed in ghosts generated under conditions of minimal osmotic stress, in ghosts from red cells partially depleted of cholesterol, and, paradoxically, in ghosts from red cells crenated by lysolecithin. The susceptibility of ghosts to crenation was lost with time; this process was potentiated by elevated temperature, low ionic strength, and traces of detergents or chlorpromazine.In that ghost shape was influenced by a variety of amphipaths, our results favor the premise that the bilayer and not the subjacent protein reticulum drives ghost crenation. The data also suggest that vigorous osmotic hemolysis induces a redistribution of lipids between the two leaflets of the bilayer which affects membrane contour through a bilayer couple mechanism. Subsequent relaxation of that metastable distribution could account for the observed loss of crenatability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号