首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cocoons of Theridiosoma gemmosum consist of two main parts, the egg sac case and the stalk. The inner space of the egg sac case is filled with nonsticky flocculent silk. Measuring 600–800 nm in diameter, the flocculent threads are never made up of bundles of longitudinally oriented nanofibrils. The egg case wall consists of a lower layer of highly ordered threads and an upper layer of cover silk. The lower, permanently white layer consists of threads in a mesh‐like arrangement, the thicker threads being 4–6 μm and the thinner threads being 2–3 μm in diameter. Each thread is a bundle of parallel nanofibrils, with a diameter between 150 and 300 nm. The silk secretions of these fibers, emitted from spigots, are processed by legs. The upper layer of the egg case is applied to the threads of the lower layer by direct rubbing against its surface, i.e. without the use of legs. In the lower and middle part of the egg case, the accumulated secretion forms a virtually compact encrustation, whereas in the upper, conically shaped, part of the egg case where it becomes the stalk, this secretion becomes substantially scarcer. The stalk is a continuation of the egg case, its proximal part made of fibers similar to those forming the inner layer of the egg case wall. The distal part of the stalk continues towards the suspension area either as a compact bundle of parallel fibers, or the stalk forks into two bundles of roughly the same thickness, which continue towards the suspension area separately. On the surface of objects onto which cocoons are attached, the secretion of the piriform glands acts as an adhesive sheet. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Larvae of the blackfly Simulium noelleri Friederichs aggregate at high populatio n densities on dams and spillways at the outlet of ponds. When displaced into the water column from their point of attachment, larvae can secrete silk threads as "life-lines" which enable them to maintain a link to the substratum an d up which they can climb to regain their original position. Experiments were conducted in a laboratory pond outlet to investigate this use of silk threads, larvae being displaced by means of forceps. It was demonstrated that: (i) the length of thread produced , and the speed of climbing the thread are independent of larval size; (ii) within limits, the speed of climbing was independent of both the length of the thread and the time already spent climbing, and (iii) speed of climb became more rapid as larvae neared the point of attachment. The range of locomotion in blackfly larvae is then discussed.  相似文献   

3.
Under SEM the silk weave in the snail-like cases of Helicopsyche crispata and H. shuttleworthi, the two species present in Italy consist of several types of meshes. The silk which connects the sand grains of the external wall is made up of multi-layered threads forming irregular meshes. The sand grains of the vertical pillars in the wall of the centr al columella are held together by very loosely woven silk and are supported by thick silken threads. The pupal silken membrane consists of concentric threads and the pupal case is attached to the substrate by a disordered mass of silken threads. The two glands which secrete the silk are long, double folded tubes.  相似文献   

4.
Orb weaver spiders use exceptionally complex spinning processes to transform soluble silk proteins into solid fibers with specific functions and mechanical properties. In this study, to understand the nature of this transformation we investigated the structural changes of the soluble silk proteins from the major ampullate gland (web radial threads and spider safety line); flagelliform gland (web sticky spiral threads); minor ampullate gland (web auxiliary spiral threads); and cylindrical gland (egg sac silk). Using circular dichroism, we elucidated (i) the different structures and folds for the various silk proteins; (ii) irreversible temperature-induced transitions of the various silk structures toward beta-sheet-rich final states; and (iii) the role of protein concentration in silk storage and transport. We discuss the implication of these results in the spinning process and a possible mechanism for temperature-induced beta-sheet formation.  相似文献   

5.
Araneoid spiders use specialized abdominal glands to manufacture up to seven different protein-based silks/glues that have diverse physical properties. The fibroin sequences that encode egg case fibers (cover silk for the egg case sac) and the secondary structure of these threads have not been previously determined. In this study, MALDI tandem TOF mass spectrometry (MS/MS) and reverse genetics were used to isolate the first egg case fibroin, named tubuliform spidroin 1 (TuSp1), from the black widow spider, Latrodectus hesperus. Real-time quantitative PCR analysis demonstrates TuSp1 is selectively expressed in the tubuliform gland. Analysis of the amino acid composition of raw egg case silk closely aligns with the predicted amino acid composition from the primary sequence of TuSp1, which supports the assertion that TuSp1 represents a major component of egg case fibers. TuSp1 is composed of highly homogeneous repeats that are 184 amino acids in length. The long stretches of polyalanine and glycine-alanine subrepeats, which account for the crystalline regions of minor ampullate and major ampullate fibers, are very poorly represented in TuSp1. However, polyserine blocks and short polyalanine stretches were highly iterated within the primary sequence, and (13)C NMR spectroscopy demonstrated that the majority of alanine was found in a beta-sheet structure in post-spun egg case silk. The TuSp1 repeat unit does not display substantial sequence similarity to any previously described fibroin genes or proteins, suggesting that TuSp1 is a highly divergent member of the spider silk gene family.  相似文献   

6.
Hilary Ann  Price 《Journal of Zoology》1981,194(2):245-255
Mytilus edulis attaches to the substratum by means of a proteinaceous byssus complex. This consists of three portions: a root, embedded in the pedal tissues, a stem, continuous with the root but external to the body and a number of byssus threads attached proximally to the stem and distally to the substratum via adhesive discs. Byssus strength varies seasonally on the shore, in response to changes in wave action (Price, in press). As a decline in byssal attachment strength implies a decline in strength of the constituent threads, a study was undertaken to establish the extent to which byssus thread strength is determined by age. The ultimate tensile stress, ultimate tensile strain and Young's Modulus were measured in threads of known age and length and a stepped regression performed on the results. It was found that age and length correlate significantly with tensile stress and Young's Modulus. Length is a less important influence than age on tensile stress but has a greater effect than age on Young's Modulus. Tensile strain is independent of both length and age.  相似文献   

7.
利用扫描电镜、氨基酸分析仪、X-衍射仪和单纤维电子强力仪分别对悦目金蛛Argiopeamoena拖丝、网框丝和卵袋丝的超微结构和理化特性进行了测试和观察。结果表明,悦目金蛛卵袋不是由一种结构均一的丝纤维构成,而是由直径相差悬殊的Ⅰ型卵袋丝和Ⅱ型卵袋丝2种丝纤维共同组成,该结果对卵袋丝仅由管状腺产生的观点提出了疑问。在氨基酸组成上悦目金蛛拖丝和网框丝相似,但其卵袋丝的氨基酸组成与拖丝和网框丝相比差别明显。另外还发现卵袋丝的强度、结晶度大于拖丝和网框丝,而它的延伸性能却不及拖丝和网框丝。  相似文献   

8.
Spider silks display generally strong mechanical properties, even if differences between species and within the same species can be observed. While many different types of silks have been tested, the mechanical properties of stalks of silk taken from the egg sac of the cave spider Meta menardi have not yet been analyzed. Meta menardi has recently been chosen as the "European spider of the year 2012", from the European Society of Arachnology. Here we report a study where silk stalks were collected directly from several caves in the north-west of Italy. Field emission scanning electron microscope (FESEM) images showed that stalks are made up of a large number of threads, each of them with diameter of 6.03 ± 0.58 μm. The stalks were strained at the constant rate of 2 mm/min, using a tensile testing machine. The observed maximum stress, strain and toughness modulus, defined as the area under the stress-strain curve, are 0.64 GPa, 751% and 130.7 MJ/m(3), respectively. To the best of our knowledge, such an observed huge elongation has never been reported for egg sac silk stalks and suggests a huge unrolling microscopic mechanism of the macroscopic stalk that, as a continuation of the protective egg sac, is expected to be composed by fibres very densely and randomly packed. The Weibull statistics was used to analyze the results from mechanical testing, and an average value of Weibull modulus (m) is deduced to be in the range of 1.5-1.8 with a Weibull scale parameter (σ(0)) in the range of 0.33-0.41 GPa, showing a high coefficient of correlation (R(2) = 0.97).  相似文献   

9.
We examined the webs of Linyphia triangularis (Clerck) and Microlinyphia pusilla (Sundevall) using light and scanning electronic microscopic techniques and compared them with the better known orb‐webs. The linyphiid sheet‐web consists of an unordered meshwork of fibres of different thicknesses. The sheet is connected to the scaffolding by means of attachment discs. Thin threads with globules, which appear similar to the viscid silk droplets of orb‐webs, are present in most webs examined. Webs of M. pusilla had a higher density of these globules than did webs of L. triangularis. Webs of both species possess five types of thread connections and contain no aqueous glue for prey capture. Instead, unlike orb‐webs, the sticky substances produced by the linyphiid aggregate glands cement the different layers and threads of the sheet by drying up after being produced. Due to their function, sheet webs may not require viscid silk, thereby leading to a more economic web. The assumption made in most previous studies, that the globules in linyphiid webs have the same properties and function as viscid silk in orb‐webs, is unfounded.  相似文献   

10.
11.
Spider attachment disc silk fibers are spun into a viscous liquid that rapidly solidifies, gluing dragline silk fibers to substrates for locomotion or web construction. Here we report the identification and artificial spinning of a novel attachment disc glue silk fibroin, Pyriform Spidroin 2 (PySp2), from the golden orb weaver Nephila clavipes . MS studies support PySp2 is a constituent of the pyriform gland that is spun into attachment discs. Analysis of the PySp2 protein architecture reveals sequence divergence relative to the other silk family members, including the cob weaver glue silk fibroin PySp1. PySp2 contains internal block repeats that consist of two subrepeat units: one dominated by Ser, Gln, and Ala and the other Pro-rich. Artificial spinning of recombinant PySp2 truncations shows that the Ser-Gln-Ala-rich subrepeat is sufficient for the assembly of polymeric subunits and subsequent fiber formation. These studies support that both orb- and cob-weaving spiders have evolved highly polar block-repeat sequences with the ability to self-assemble into fibers, suggesting a strategy to allow fiber fabrication in the liquid environment of the attachment discs.  相似文献   

12.
Spiders attach silken threads to substrates by means of glue-coated nanofibers (piriform silk), spun into disc-like structures. The organization and ultrastructure of this nano-composite silk are largely unknown, despite their implications for the biomechanical function and material properties of thread anchorages. In this work, the ultrastructure of silken attachment discs was studied in representatives of four spider families with Transmission Electron Microscopy to facilitate a mechanistic understanding of piriform silk function across spiders. Based on previous findings from comparative studies of piriform silk gland morphology, we hypothesized that the fibre-glue proportion of piriform silk differs in different spiders, while the composition of fibre and glue fractions is consistent. Results confirmed large differences in the relative proportion of glue with low amounts in the orb weaver Nephila senegalensis (Araneidae) and the hunting spider Cupiennius salei (Ctenidae), larger amounts in the cobweb spider Parasteatoda tepidariorum (Theridiidae) and a complete reduction of the fibrous component in the haplogyne spider Pholcus phalangioides (Pholcidae). We rejected our hypothesis that glue ultrastructure is consistent. The glue is a colloid with polymeric and fluid fractions that strongly differ in proportions and assembly. We further confirmed that in all species studied both dragline and piriform silk fibres do not make contact with the environmental substrate. Instead, adhesion is established by a thin dense skin layer of the piriform glue. These results advance our understanding of piriform silk function and the interspecific variation of its properties, which is significant for spider biology, web function and the bioengineering of silk.  相似文献   

13.
In the Bryozoa in general the colony is attached by means of the primary zooid, the ancestrula, which is permanently cemented to the substratum. The attachment is brought about, in the marine bryozoans, by the larva everting its interior sac into a basal adhesive disc secreting a thin layer of hardening mucus. In Scrupocellaria reptans no adhesive disc was found. The metamorphosing larva is fixed to the substratum by a column of loose, sticky secretion. This primary fixation is ephemeral and replaced by a secondary, permanent fixation by one pair of rootlets. Thus, the ancestrula body proper and the colony arising from it become permanently free from the substratum but anchored to it by rootlets, the primary pair and series of secondary rootlets. This unique and certainly secondarily evolved type of attachment is apparently realized in the Scrupocellariidae in general, to a more or less perfect degree. It appears as one of several possible models to meet efficiently with environmental disturbances.  相似文献   

14.
Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring 1,2. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which function as small biofactories. These biofactories manufacture and store large quantities of silk proteins for fiber production. Through a complex series of biochemical events, these silk proteins are converted from a liquid into a solid material upon extrusion.Mechanical studies have demonstrated that spider silks are stronger than high-tensile steel 3. Analyses to understand the relationship between the structure and function of spider silk threads have revealed that spider silk consists largely of proteins, or fibroins, that have block repeats within their protein sequences 4. Common molecular signatures that contribute to the incredible tensile strength and extensibility of spider silks are being unraveled through the analyses of translated silk cDNAs. Given the extraordinary material properties of spider silks, research labs across the globe are racing to understand and mimic the spinning process to produce synthetic silk fibers for commercial, military and industrial applications. One of the main challenges to spinning artificial spider silk in the research lab involves a complete understanding of the biochemical processes that occur during extrusion of the fibers from the silk-producing glands.Here we present a method for the isolation of the seven different silk-producing glands from the cobweaving black widow spider, which includes the major and minor ampullate glands [manufactures dragline and scaffolding silk] 5,6, tubuliform [synthesizes egg case silk] 7,8, flagelliform [unknown function in cob-weavers], aggregate [makes glue silk], aciniform [synthesizes prey wrapping and egg case threads] 9 and pyriform [produces attachment disc silk] 10. This approach is based upon anesthetizing the spider with carbon dioxide gas, subsequent separation of the cephalothorax from the abdomen, and microdissection of the abdomen to obtain the silk-producing glands. Following the separation of the different silk-producing glands, these tissues can be used to retrieve different macromolecules for distinct biochemical analyses, including quantitative real-time PCR, northern- and western blotting, mass spectrometry (MS or MS/MS) analyses to identify new silk protein sequences, search for proteins that participate in the silk assembly pathway, or use the intact tissue for cell culture or histological experiments.  相似文献   

15.
Summary The present investigation deals with some of the organizational and histochemical aspects of the embryo sac ofScilla sibirica. Both the synergids and egg cell are invested by PAS-positive complete walls. The filiform apparatus comprises an elaborate system of fibrillar projections, showing extensive ramifications. The micropylar region of the embryo sac wall from where the filiform apparatus originates is composed of three distinct layers. On a histochemical basis it may be surmised that, unlike the egg cell, the synergids are metabolically very active. Two kinds of wall ingrowths (i) massive and highly branched very much akin to the filiform apparatus, and (ii) small tuberculate wall projections, are unique to the antipodal cells of S.sibirica. Small tuberculate projections have also been observed along the wall of the central cell adjacent to the nutrient-rich nucellar cells. The antipodals and the central cell show the presence of starch grains and abundant total proteins. All the cell types in the embryo sac ofS. sibirica are structurally so organized as to meet the requirements of its nutrition during pre- and postfertilization development. The presence of abundant PAS-positive granular substance in the cells of nucellar epidermis probably establishes a gradient which assists in the pollen tube growth.  相似文献   

16.
The larval morphology, settlement behavior, and the rapid morphogenetic movements that occur during the first 60 sec of metamorphosis of the cellularioid cheilostome bryozoan Bugula neritina have been examined and analyzed by light and electron microscopy. The larva attaches to the substratum at the onset of metamorphosis by the eversion of the internal sac. At the same time, the coronal cilia reverse their direction of beat, spreading an adhesive secreted by the neck region of the everting sac over the metamorphosing larva. During attachment, the larva goes through several configurations that coincide with the sequential contraction and relaxation of certain larval muscles. Histological and ultrastructural evidence indicates that the neck and wall regions of the internal sac are everted by the contraction of the muscles in the equatorial plane of the larva at the same time that the roof region in pulled toward the larval equator by the contraction of the axial muscles. The subsequent relaxation of the axial muscles allows the roof region to be everted by the antagonistic force generated by the sustained contraction of the equatorial musculature. After the roof region attaches to the substratum, the apical disc is temporarily retracted by a second contraction of the axial muscles. The apical disc subsequently reextends as the axial muscles relax just before coronal involution. A comparison of the ontogenetic sequence of rapid morphogenetic movements in the metamorphoses of cheilostome and ctenostome bryozoans indicates that cellularioid cheilostomes have undergone peramorphosis in the aspect of development.  相似文献   

17.
Microsporogenesis and embryology of the monotypic Zippelia (Z. begoniaefolia) Blume (Piperaceae) is described for the first time to assess its systematic relationships. The formation of the anther wall is of Basic Type such that the anther wall, consisting of an endothecium with fibrous thickenings, two middle layers, and a glandular septum with 2‐nucleate cells, is derived from a primary parietal layer. Simultaneous cytokinesis follows meiosis of the microspore mother cell thence forming a tetrahedral tetrad of microspores. The single basal ovule is orthotropous, crassinucellate and bitegmic but only the inner integument forms the micropyle. The sporogenous cell of the nucellus functions directly as a megaspore mother cell. A coenocyte with four nuclei forms after meiosis of the megaspore mother cell. The formation of the embryo sac is tetrasporic ab initio and is of, or similar to, the Drusa Type of embryo sac in which the nuclei of the coenocyte undergo two successive mitoses and forms a 16‐celled or 16‐nucleate embryo sac that is ovoid in shape. The embryo sac has an egg apparatus consisting of an egg cell and two synergids (but one of the latter is less discernable). Two polar cells occur just beneath the egg apparatus and 11 antipodal cells or nuclei are arranged along the lower part of the inner wall of the embryo sac. They are linked by threads of cytoplasm. The two polar cells are separated or fused before fertilization. A large primary endosperm nucleus with many nucleoli, which resulted from the fertilized polar cells and with the participation of antipodal cells, divides into a free nuclei stage. The free nuclei are arranged along the lower part of the inner wall of the embryo sac or rarely assemble at the central part. The development of endosperm is thus of the Nuclear Type. The zygote remains undivided and fails to develop even when the seed is nearly mature. Frequently, the zygote and the endosperm abort later and leave an empty chamber in the top part of the seed. Most of the seed content is starchy perisperm. Only the inner integument forms the seed coat and the pericarp develops glochidiate hairs (anchor‐like hairs) when the endosperm begins to develop. By comparison with the other piperaceous taxa using embryological and botanical features, Zippelia is referred to as a basal taxon and a more isolated evolutionary line or a blind branch in the Piperaceae. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140 , 49–64.  相似文献   

18.
The larval morphology and settlement of the vesicularioid ctenostome bryozoan Bowerbankia gracilis has been investigated by light and electron microscopy in an attempt to elucidate the mechanism of attachment to the substratum at the onset of metamorphosis. The oral epithelium in the free-swimming larva is infolded to form a glandular internal sac at the oral pole. The internal sac is not specialized into distinct regions, but consists of a uniform, simple columnar epithelium filled with secretory granules. The hemispherical internal sac is underlain by a cup-shaped layer of undifferentiated cells that constitutes the polypide rudiment. The cupiform layer of undifferentiated cells is in turn embraced by a network of muscle fibers called the rete muscularis. At the onset of metamorphosis, the larva constricts oro-laterally and the internal sac is everted against the substratum. As the sac everts, the glandular cells secrete an adhesive that is wafted up over the metamorphosing larva by the reversed beating of the coronal cilia. At the same time, the cupiform layer of undifferentiated cells flattens in the plane of the oro-lateral constriction and doubles in thickness. The cells of the cupiform layer undergo a corresponding transformation from short columnar cells to flask-shaped cells that bulge into the glandular cells of the internal sac. The narrow ends of the flask-shaped cells abut the strongly contracted muscle fibers of the rete muscularis. It is hypothesized that the contraction of the muscle fibers of the rete muscularis is responsible for the change in shape of the undifferentiated cells and, consequently, for the eversion of the internal sac. On the basis of this study and a review of the literature, it is concluded that attachment to the substratum at the onset of metamorphosis typically is effected by the eversion of an internal sac in larvae of the ctenostome superfamily Vesicularioidea.  相似文献   

19.
Structure of the embryo sac and development of the proembryo of Acer saccharinum L. are described from paraffin sections. The embryo sac is monosporic and identical to the 8-nucleate Polygonum type in all respects. Cell, nuclear, and nucleolar sizes are constant within a narrow range and sharply distinctive for all components of the mature sac. Polar nuclei fuse before double fertilization. The longitudinal axis of symmetry of the egg, zygote, and proembryo is variously oriented with respect to the longitudinal axis of the embryo sac and is determined by the point of attachment of the presumptive egg cell to the sac wall. Subsequent development of the young embryo is responsive to aligning factors within the embryo sac and is collateral with the longitudinal axis of the sac. The first segmentation is transverse to the longitudinal axis of the zygote; the second and third are transverse in the basal cell and longitudinal in the apical cell. Descendants of ci form a short irregular suspensor; ca and m give rise to the apical and basal halves respectively of the embryo proper. The contribution of the proembryonic tiers to the older embryo differs in embryos of different initial orientation. Distribution and orientation of mitosis in the proembryo are shown in two accumulation maps.  相似文献   

20.
Studies of ultrastructure and ATPase localization of the mature embryo sac in Vicia faba L. show that the egg cell has no cell wall at thechalazal end, it has a chalazally located nucleus and a large micropylar vacuole. There are many nuclear pores in the nuclear membrane. The cytoplasm is restricted around the nucleus. Dictyosome and mitochondria are few. There are some starch grains and lipid grains in the egg cytoplasm. There are no obvious differences between two synergids. No cell wall is seen at the chalazal end either, but there are some vesicles which project to vacuole of the central cell and fuse with its vacuolar membrane. Plasmodesmata connections occur within the synergid wall where it is adjacent to the central cell. The synergid has a micropylarly located nucleus and a chalazal vacuole, the nucleus is irregularly shaped. The synergid cytoplasm is rich in organelles. The filiform aparatus is of relatively heterogeneous structure. The central cell is occupied by a large vacuole and its cytoplasm is confined to a thin layer along the empryo sac wall, but is rich in various organelles, starch grains and lipid bodies. Nucleolar vacuoles are often present two polar nuclei. The nuclear membranes of two polar nuclei have partly fused. ATPase reactive product was located obviously at the endoplasmic reticulum in cytoplasm of the egg cell and central cell. The embryo sac wall consists of different density of osmiophilic layer. There are some wall ingrowths in chalazal region of the embryo sac. The long-shaped and cuneate cells of chalazal region are peculiar. Special tracks of ATPase reactive products are visible at their intercellular space which may be related to transportation of nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号