首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein S8 fromThermus thermophilus consists of 138 amino acids ofM, 15,840. Its primary structure was established using peptide sequences from two different digests. Protein S8 fromT. thermophilus shares a high percentage of identity with protein S8 fromThermus aquaticus. There are some consensus sequences between proteins S8 from eubacteria, archebacteria, chloroplasts, and cyanelles.  相似文献   

2.
The primary structure of the 23S rRNA binding ribosomal protein L1 from the 50S ribosomal subunit ofThermus thermophilus ribosomes has been elucidated by direct protein sequencing of selected peptides prepared by enzymatic and chemical cleavage of the intact purified protein. The polypeptide chain contains 228 amino acids and has a calculated molecular mass of 24,694 D. A comparison with the primary structures of the corresponding proteins fromEscherichia coli andBacillus stearothermophilus reveals a sequence homology of 49% and 58%, respectively. With respect to both proteins, L1 fromT. thermophilus contains particularly less Ala, Lys, Gln, and Val, whereas its content of Glu, Gly, His, Ile, and Arg is higher. In addition, two fragments obtained by limited proteolysis of the intact, unmodified protein were characterized.  相似文献   

3.
The trpE gene of Thermus thermophilus HB8 was cloned by complementation of an Escherichia coli tryptophan auxotroph. The E. coli harboring the cloned gene produced the anthranilate synthase I, which was heat-stable and enzymatically active at higher temperature. The nucleotide sequence of the trpE gene and its flanking regions was determined. The trpE gene was preceded by an attenuator-like structure and followed by the trpG gene, with a short gap between them. No other gene essential for tryptophan biosynthesis was observed after the trpG gene. The amino-acid sequences of the T. themophilus anthranilate synthase I and II deduced from the nucleotide sequence were compared with those of other organisms.  相似文献   

4.
H. -J. Park  H. Erdmann  M. Sprinzl 《Protoplasma》1995,184(1-4):104-110
Summary An NADH oxidase purified from the extreme thermophileThermus thermophilus HB8 is a monomeric flavoprotein with a 1 1 ratio of flavin-adenine dinucleotide (FAD) to the polypeptide chain. It catalyzes in vitro the oxidation of reduced NADH or NADPH with the formation of H2O2. The gene encoding the NADH oxidase fromT. thermophilus HB8 was cloned, and its nucleotide sequence was determined. The molecular mass of 22,749 Da, as deduced from thenox gene, agrees with that of the purified NADH oxidase fromT. thermophilus HB8, as estimated by mass spectrometry. Thenox gene does not contain a GX4GK consensus sequence typical for nucleotide binding proteins. Thenox gene was overexpressed inEscherichia coli, and a protocol for the rapid purification of theE. coli-borneT. thermophilus NADH oxidase or its His6-tagged analogue was developed by using thermal denaturation step and affinity chromatography.  相似文献   

5.
The core ribosomal protein S8 binds to the central domain of 16S rRNA independently of other ribosomal proteins and is required for assembling the 30S subunit. It has been shown with E. coli ribosomes that a short rRNA fragment restricted by nucleotides 588-602 and 636-651 is sufficient for strong and specific protein S8 binding. In this work, we studied the complexes formed by ribosomal protein S8 from Thermus thermophilus and Methanococcus jannaschii with short rRNA fragments isolated from the same organisms. The dissociation constants of the complexes of protein S8 with rRNA fragments were determined. Based on the results of binding experiments, rRNA fragments of different length were designed and synthesized in preparative amounts in vitro using T7 RNA-polymerase. Stable S8–RNA complexes were crystallized. Crystals were obtained both for homologous bacterial and archaeal complexes and for hybrid complexes of archaeal protein with bacterial rRNA. Crystals of the complex of protein S8 from M. jannaschii with the 37-nucleotide rRNA fragment from the same organism suitable for X-ray analysis were obtained.  相似文献   

6.
《Gene》1997,193(1):23-30
To assess the organization of the Thermus thermophilus ribosomal protein genes, a fragment of DNA containing the complete S10 region and ten ribosomal protein genes of the spc region was cloned, using an oligonucleotide coding for the N-terminal amino acid (aa) sequence of T. thermophilus S8 protein as hybridization probe. The nucleotide sequence of a 4290 bp region between the rps17 and rpl15 genes was determined. Comparative analysis of this gene cluster showed that the gene arrangement (S17, L14, L24, L5, S14, S8, L6, L18, S5, L30 and L15) is identical to that of eubacteria. However, T. thermophilus ribosomal protein genes corresponding to the Escherichia coli S10 and spc operons are not resolved into two clusters: the stop codon of the rps17 gene (the last gene of the S10 operon in E. coli) and the start codon of the rpl14 gene (the first gene of the spc operon in E. coli) overlap. Most genes, except the rps14-rps8 intergenic spacer (69 bp), are separated by very short (only 3–7 bp) spacer regions or partially overlapped. The deduced aa sequences of T. thermophilus proteins share about 51–100% identities with the sequences of homologous proteins from thermophile Thermus aquaticus and Thermotoga maritima and 27–70% identities with the sequences of their mesophile counterparts.  相似文献   

7.
The primary structure of the 23S rRNA binding ribosomal protein L1 from the 50S ribosomal subunit ofThermus thermophilus ribosomes has been elucidated by direct protein sequencing of selected peptides prepared by enzymatic and chemical cleavage of the intact purified protein. The polypeptide chain contains 228 amino acids and has a calculated molecular mass of 24,694 D. A comparison with the primary structures of the corresponding proteins fromEscherichia coli andBacillus stearothermophilus reveals a sequence homology of 49% and 58%, respectively. With respect to both proteins, L1 fromT. thermophilus contains particularly less Ala, Lys, Gln, and Val, whereas its content of Glu, Gly, His, Ile, and Arg is higher. In addition, two fragments obtained by limited proteolysis of the intact, unmodified protein were characterized.  相似文献   

8.
Summary The trpE gene from Acinetobacter calcoaceticus encoding the anthranilate synthase component I was cloned, identified by deletion analysis and sequenced. It encodes a predicted polypeptide of 497 amino acids with a calculated molecular weight of 55323. Its primary structure shows 49% identical amino acids with the enzyme from Clostridium thermocellum, 45% with that of Thermus thermophilus and only 35% with that of Escherichia coli. The codon usage of the trpE genes encoding the most homologous enzymes differs greatly indicating selection for amino acid maintainance. The homologies are clustered in the C-terminal 200 amino acids of the sequences indicating that this part is important for enzymic activity.  相似文献   

9.
Both structural and thermodynamic studies are necessary to understand the ribosome assembly. An initial step was made in studying the interaction between a 16S rRNA fragment and S7, a key protein in assembling the prokaryotic ribosome small subunit. The apparent dissociation constant was obtained for complexes of recombinant Escherichia coliandThermus thermophilusS7 with a fragment of the 3" domain of the E. coli16S rRNA. Both proteins showed high rRNA-binding activity, which was not observed earlier. Since RNA and proteins are conformationally labile, their folding must be considered to correctly describe the RNA–protein interactions.  相似文献   

10.
Summary. Protein L4 from the thermophilic bacterium Thermus thermophilus (TthL4) was heterologously overproduced in Escherichia coli cells and purified under native conditions by using ion exchange chromatography. Although it’s known strong binding to RNA (23S rRNA as well as mRNA) the yield of the purified protein was 6 mg per 10 g of cells and it is similar to that referred for Thermotoga maritima L4 ribosomal protein. In addition, E. coli cells harboring the wild type Thermus thermophilus L4 (wtTthL4) ribosomal protein as well as its mutant having changed the highly conserved glutamic acid 56 by alanine (TthL4-Ala 56) were incorporated into E. coli ribosomes after transformation of the host cells with the recombined vector. The cells having incorporated the mutant TthL4-Ala56 are more sensitive against erythromycin related to that containing the wtTthL4 protein. The resistance to the drug indicates that the mutated amino acid Glu56 is probably critical for the local ribosomal conformation and that its mutation induces conformational disturbances that are “transferred” to the entrance of the major exit tunnel, the place where the drug does bind.  相似文献   

11.
Summary The organisation of the leucine genes in Thermus thermophilus HB8 was analysed by examining the ability of recombinant DNAs to complement Escherichia coli mutations. The arrangement of the genes is different from that in the mesophilic bacteria E. coli and Salmonella typhimurium. The promoter responsible for the expression of the leuB, leuC and leuD genes of Thermus HB8 in E. coli was identified. The sequence of Thermus DNA containing this promoter revealed structural similarities to the promoter and attenuator regions of the E. coli leucine operon.  相似文献   

12.
Several extreme thermophilic Gram negative bacteria found in a thermally polluted river in Belgium have been compared with Thermus strains isolated from widely distant geographical areas. This analysis has become possible after the design of a new culture medium (162).All strains examined (including the isolate successively denominated Flavobacterium thermophilum and Thermus thermophilus) were found to be morphologically identical with strain YT-1 of Thermus aquaticus. The cells are immotile, rod-like, strictly aerobic, catalase and oxidase positive. They produce amylase, hydrolyze gelatin and are confirmed to be highly sensitive towards penicillin.The nutritional pattern of all strains has been analysed extensively, by testing a broad spectrum of possible substrates.The strains display a uniform response to the microbiological tests applied and most probably belong to the same species: Thermus aquaticus.Abbreviations GC guanosine cytosine - ATCC American Type Culture Collection - DSM Deutsche Sammlung von Mikroorganismen  相似文献   

13.
【目的】CRISPR-Cas系统为嗜热链球菌抵抗噬菌体等外源基因元件提供获得性免疫,分析NCBI中已公开发表全基因组序列的9株嗜热链球菌所含CRISPR-Cas系统的数目和类型,对实验室相应菌株的CRISPR-Cas系统进行检测。【方法】利用生物信息学方法对NCBI中9株已测序嗜热链球菌所含CRISPR-Cas系统进行分析,根据其Cas基因序列设计引物,对实验室嗜热链球菌菌株的Cas基因进行扩增、测序,分析实验室6株嗜热链球菌的CRISPR-Cas系统情况。【结果】9株标准菌株均含不同数目的CRISPR-Cas系统,其类型主要为Ⅱ-A型、Ⅲ-A型和Ⅰ-E型,各类型的标志Cas基因高度保守。6株供试菌中,S4仅含Cas9基因,其它5株均含有Cas9基因、Cas10基因和Cas9*基因,79和KLDS3.0207还含有Cas3基因。【结论】可根据标准菌株高度保守的Cas基因设计引物,预测未知嗜热链球菌所含CRISPRCas系统的数目和类型。S4仅含1个Ⅱ-A型CRISPR-Cas系统,其它5株均含有2个Ⅱ-A型CRISPR-Cas系统和1个Ⅲ-A型CRISPR-Cas系统,此外,79和KLDS3.0207均含有1个Ⅰ-E型CRISPR-Cas系统。  相似文献   

14.
Three-component starters for yogurt were obtained on the base of starter LBB.BY 5-12 for traditional Bulgarian yogurt, containing strains Lactobacillus delbrueckii ssp. bulgaricus B5 and Streptococcus thermophilus A with the addition of either an exopolysaccharide-producing S. thermophilus strain 6V or the fast acidifying S. thermophilus strain N1. To differentiate between the three strains in the starter cultures, randomly amplified polymorphic DNA (RAPD) technique was applied to develop strain-specific probes. Southern hybridization against dot-blots of chromosomal DNA from the three S. thermophilus strains confirmed that two probes, derived from a 770 bp RAPD product obtained with primer RAPD-4 and a 290 bp sequence obtained with primer OPP-7 were specific for S. thermophilus 6V and S. thermophilus A, respectively, while no hybridization to S. thermophilus N1 DNA was observed. The selected probes were used to differentiate between S. thermophilus colonies on a solid agar medium by colony hybridization. The evaluation of the viable cell counts revealed that the populations of S. thermophilus A and the added S. thermophilus strains 6V or N1 in the three-component starters and in yogurt had nearly equal proportion allowing each strain to contribute to the enriched properties of starter and product.  相似文献   

15.
An integrative vector was constructed for inserting heterologous genes within a non-functional open reading frame (ORF) on the chromosome of Streptococcus thermophilus. The vector, pINTRS, contained a temperature sensitive origin of replication and an erythromycin resistance gene for initial selection in S. thermophilus. The region of the vector containing unique cloning sites, for insertion of recombinant genes, was flanked by homologous DNA sequences corresponding to a pseudogene in S. thermophilus to facilitate chromosomal integration. The gene encoding green fluorescent protein, regulated by a plasmid borne hsp promoter of S. thermophilus, was cloned into pINTRS to demonstrate proper functioning of the vector. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

16.
We examined a single, non-spore-forming, aerobic, thermophilic strain that was isolated from a deep-sea hydrothermal vent in the Guaymas Basin at a depth of 2000 m and initially placed in a phenetic group with Thermus scotoductus (X-1). We identified this deep-sea isolate as a new strain belonging to Thermus thermophilus using several parameters. DNA–DNA hybridization under stringent conditions showed 74% similarity between the deep-sea isolate and T. thermophilus HB-8T (T = type strain). Phenotypic characteristics, such as the utilization of carbon sources, hydrolysis of different compounds, and antibiotic sensitivity were identical in the two strains. The polar lipids composition showed that strain Gy1211 belonged to the genus Thermus. The fatty acids composition indicated that this strain was related to the marine T. thermophilus strain isolated from the Azores. The new isolate T. thermophilus strain Gy1211 grew optimally at 75°C, pH 8.0, and 2% NaCl. A hydrostatic pressure of 20 MPa, similar to the in situ hydrostatic pressure of the deep-sea vent from which the strain was isolated, had no effect on growth. Strain HB-8T, however, showed slower growth under these conditions. Received: November 26, 1997 / Accepted: May 20, 1999  相似文献   

17.
The enzymatic breakdown of milk proteins releases bioactive peptides. Two such peptides are the 11-residue antimicrobial peptide from bovine lactoferrin (BL-11) and the 12-residue hypotensive peptide from αs1-casein (C-12). These two peptides have now been cloned in Streptococcus thermophilus to develop strains that enhance the functionality and nutritional value of dairy food products. Nucleic acid sequences encoding the peptides were generated by overlapping PCR and were subsequently cloned into a new expression vector under control of the ST2201 promoter. S. thermophilus transformants were successfully identified using GFP as a selectable marker. The presence of the synthetic gene constructs in S. thermophilus was confirmed by PCR. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Isoprenoids are biosynthesized via the mevalonate or the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways the latter being used by most pathogenic bacteria, some parasitic protozoa, plant plastids, but not by animals. We determined the X-ray structure of the homodimeric [4Fe–4S] cluster carrying E-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate synthase (GcpE) of Thermus thermophilus which catalyzes the penultimate reaction of the MEP pathway and is therefore an attractive target for drug development. The [4Fe–4S] cluster ligated to three cysteines and one glutamate is encapsulated at the intersubunit interface. The substrate binding site lies in front of an (αβ)8 barrel. The great [4Fe–4S] cluster-substrate distance implicates large-scale domain rearrangements during the reaction cycle.

Structured summary

gcpEbinds to gcpE by x-ray crystallography (View interaction)  相似文献   

19.
The L11 ribosomal protein from Thermus thermophilus (TthL11) has been overproduced and purified to homogeneity using a two-step purification protocol. The overproduced protein carries a similar methylation pattern at Lys-3 as does its homolog from Escherichia coli. Chymotrypsin digested only a small part of the TthL11 protein and did not cleave TthL11 into two peptides, as in the case of EcoL11, but produced only a single N-terminal peptide. Tryptic digestion of TthL11 also produced an N-terminal peptide, in contrast to the C-terminal peptide obtained with L11 from Bacillus stearothermophilus. The recombinant protein forms a specific complex with a 55-nt 23S rRNA fragment known to interact with members of the L11 family from several organisms. Cooperative binding of TthL11 and thiostrepton to 23S rRNA leads to an increased protection of TthL11 from tryptic digestion. The similar structural and biochemical properties as well as the significant homology between L11 from E. coli and B. stearothermophilus with the corresponding protein from Thermus thermophilus indicate an evolutionarily conserved protein important for ribosome function.  相似文献   

20.
Enzymes from thermophiles are preferred for industrial applications because they generally show improved tolerance to temperature, pressure, solvents, and pH as compared with enzymes from mesophiles. However, nearly all thermostable enzymes used in industrial applications or available commercially are produced as recombinant enzymes in mesophiles, typically Escherichia coli. The development of high-temperature bioprocesses, particularly those involving cofactor-requiring enzymes and/or multi-step enzymatic pathways, requires a thermophilic host. The extreme thermophile most amenable to genetic manipulation is Thermus thermophilus, but the study of expression of heterologous genes in T. thermophilus is in its infancy. While several heterologous genes have previously been expressed in T. thermophilus (Fridjonsson et al. in J Bacteriol 184:3385–3391, 2002, Koyama et al. in Appl Environ Microbiol 56:2251–225, 1990, Lasa et al. in J Bacteriol 174:6424–6431, 1992, Mathew et al. in Appl Environ Microbiol 58:421–425, 1992, Takagi et al. in J Ind Microbiol Biotechnol 23:214–217, 1999, Tamakoshi et al. in Extremophiles 5:17–22 2001), the data reported here include the first examples of the functional expression of a gene from an archaeal hyperthermophile (bglA from Pyrococcus woesei), a cofactor-requiring enzyme (dszC from Rhodococcus erythropolis IGTS8), and a two-component enzyme (carBa and carBb from Sphingomonas sp. GTIN11). A thermostable derivative of pnbA from Bacillus subtilis was also expressed, further expanding the list of genes from heterologous hosts that have been expressed in T. thermophilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号