首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The partitioning of chymosin (from Aspergilus niger) and pepsin (from bovine stomach) was carried out in aqueous-two phase systems formed by polyethyleneglycol-potassium phosphate. The effects of polymer concentration, molecular mass and temperature were analysed. The partition was assayed at pH 7.0 in systems of polyethyleneglycol of molecular mass: 1450, 3350, 6000 and 8000. Both proteins showed high affinity for the polyethyleneglycol rich phase. The increase of polyethyleneglycol concentration favoured the protein transfer to the top phase, suggesting an important protein-polymer interaction. Polyethyleneglycol proved to have a stabilizing effect on the chymosin and pepsin, increasing its protein secondary structure. This finding agreed with the enhancement of the milk clotting activity by the polyethyleneglycol. The method appears to be suitable as a first step for the purification of these proteins from their natural sources.  相似文献   

2.
The combination of two bioseparation techniques, partition in aqueous two-phase systems and polyelectrolyte precipitation of the target enzyme from the phase where it is present, was assayed to purify pepsin from bovine abomasum homogenate. Pepsin was partitioned in favor of the polyethyleneglycol-rich phase in an aqueous two-phase system of polyethyleneglycol 600 and 1450-sodium phosphate; however, a great amount of impure proteins were present. Chitosan (a cationic natural polyelectrolyte) was added to precipitate this acid enzyme as a form of insoluble complex. The addition of this second step increased the purity of the enzyme significantly while the yield was not significantly decreased. The combination of both partition in polyethyleneglycol 1450-phosphate system and chitosan precipitation produced a pepsin recovery of 48.5% with a purification factor of 9.0. The biological activity of the recovered enzyme remained unaltered.  相似文献   

3.
The partitioning of model proteins (bovine serum albumin, ovalbumin, trypsin and lysozyme) was assayed in aqueous two-phase systems formed by a salt (potassium phosphate, sodium sulfate and ammonium sulfate) and a mixture of two polyethyleneglycols of different molecular mass. The ratio between the PEG masses in the mixtures was changed in order to obtain different polymer average molecular mass. The effect of polymer molecular mass and polydispersivity on the protein partition coefficient was studied. The relationship between the logarithm of the protein partition coefficient and the average molecular mass of the phase-forming polymer was found to depend on the polyethyleneglycol molecular mass, the salt type in the bottom phase and the molecular weight of the partitioned protein. The polymer polydispersivity proved to be a very useful tool to increase the separation between two proteins having similar isoelectrical point.  相似文献   

4.
The theoretical framework based only on the excluded volume forces is not enough to explain the bovine serum albumin partitioning behaviour in aqueous biphasic systems. The goal of this work is to look at the phase separation via the polymer effect on the water structure. Our findings suggest that polyethyleneglycol 600-protein interaction is conducted by van der Waals forces between the hydrophobic surfaces from PEG and protein molecules, which implies the rupture of hydrogen bonds from the structured water in their neighbours. Therefore, the protein will concentrate in the most water-structured phase (polyethyleneglycol) in order to reach the minimal free energy condition. When polyethyleneglycol molecular weight increases, its exclusion from protein surface prevails, thus pushing the bovine serum albumin to the bottom phase.  相似文献   

5.
Partitioning behaviour of the bovine whey proteins (bovine serum albumin, alpha-lactoalbumin and beta-lactoglobulin) and human alpha-1 antitrypsin in aqueous two-phase systems prepared with polyethyleneglycol (molecular masses: 1000, 1450 and 3350)-sodium citrate was analysed at pH 5.2, 6.2 and 8.2. Alpha lactoalbumin concentrated in the polyethyleneglycol rich-phase, while beta-lactoglobulin, bovine serum albumin and alpha-1 antitrypsin showed affinity for the citrate rich-phase. In aqueous two-phase systems of high medium pH and high polyethyleneglycol molecular mass the protein partitioning equilibrium is displaced to the citrate rich-phase. The polyethyleneglycol 1450-pH 5.2 system with a top/bottom phase-volume ratio of 3 showed to have the best capability of recovering the alpha-1 antitrypsin from a mixture prepared with natural milk whey and human alpha-1 antitrypsin. The recovery of this protein in the bottom phase was of 90% and the purity of the obtained product was of 98%. The method appears to be suitable as a starting point to isolate other human proteins expressed in transgenic bovine milk.  相似文献   

6.
The partitioning pattern of bovine trypsinogen (TRPz) and alpha-chymotrypsinogen (ChTRPz) was investigated in a low impact aqueous two-phase system formed by polyethyleneglycol (PEG) and sodium tartrate (NaTart) pH 5.00. ChTRPz exhibited higher partition coefficients than TRPz did in all the assayed systems. The decrease in PEG molecular weight and the increase in tie line length were observed to displace the partitioning equilibrium of both proteins to the top phase, while phase volume ratios in the range 0.5–1.5 showed not to affect protein partitioning behaviour. Systems formed by PEG of molecular weight 600 with composition corresponding to a high tie line length (PEG 12.93%, w/w and NaTart 21.20%, w/w) are able to recover most of both zymogens in the polymer-enriched phase. A crucial role of PEG–protein interaction in the partitioning mechanism was evidenced by isothermal calorimetric titrations. The major content of highly exposed tryptophan rests, present in ChTRPz molecule, could be considered to be determinant of its higher partition coefficient due to a selective charge transfer interaction with PEG molecule. A satisfactory correlation between partition coefficient and protein surface hydrophobicity was observed in systems formed with PEGs of molecular weight above 4000, this finding being relevant in the design of an extraction process employing aqueous two-phase systems.  相似文献   

7.
Partitioning behaviour of the bovine whey proteins (bovine serum albumin, alpha lactoalbumin and beta lactoglobulin) and alpha-1 antitrypsin in aqueous two-phase systems prepared with polyethyleneglycol (molecular masses: 1000; 1500 and 3350)-potassium phosphate was analysed. Bovine serum albumin and alpha lactoalbumin concentrated in the polyethyleneglycol rich phase with a partition coefficient of 10.0 and 27.0, respectively, while beta lactoglubulin and alpha-1 antitrypsin showed affinity for the phosphate-rich phase with a partition coefficient of 0.07 and 0.01, respectively. An increase of medium pH induced an increase of the partition coefficient of these proteins while the increase in polyethyleneglycol molecular mass induced the opposite behaviour. The system polyethyleneglycol 1500-pH 6.3 showed the best capacity for recovering the alpha-1 antitrypsin with a yield of 80% and a purification factor between 1.5 and 1.8 from an artificial mixture of the milk whey proteins and alpha-1 antitrypsin. The method appears to be suitable as a starting point to isolate proteins expressed in transgenic milk.  相似文献   

8.
The influence of chloride salts of Na+, Rb+ and Cs+ at concentrations from 0.15 to 1.2M was studied with bovine albumin, trypsin, ovoalbumin and lysozyme partitioning in an aqueous two-phase system formed by polyethyleneglycol 1500 and potassium phosphate at pH 7.4. Monovalent cations favoured the protein transfer to the polyethyleneglycol rich phase in the following order: Rb+ > Na+ > Cs+. Structure making cations as Na+ induced a poor loss of structured water, producing little diminution of the molar partial specific volume of polyethyleneglycol, while Rb+ and Cs+, structure breaking cations, induced a significant decrease in the specific volume of the polyethylene glycol. The increase of available solution free volume in the top phase favours the protein transfer to the polyethyleneglycol rich phase. Na+ and Rb+ induced a slight decrease in the alpha helix content of the proteins, while Cs+ increased the secondary structure for all the proteins. All the cations induced a decrease in the hydrophobic surface of the proteins, this effect was more significant in the presence of Cs+.  相似文献   

9.
The partitioning of alpha-1-antitrypsin was assayed in biphasic aqueous systems containing potassium phosphate and two polyethyleneglycols of molecular mass 600 and 1000, respectively. In order to isolate the alpha-1-antitrypsin from serum plasma, the partitioning behaviour of human serum albumin, its principal contaminant, was also studied. Several aqueous two-phase systems with different partitioning properties were obtained by varying the PEG1000/PEG600 mass proportion. In systems with PEG1000/PEG600 mass ratio of 8, the optimal difference between the partition coefficients of both proteins was found. Under such conditions, a satisfactory purification was carried out by a three-step extraction procedure. By applying this method the alpha-1-antitrypsin specific activity increased severalfold (nearly 10 times) with a yield of 43%.  相似文献   

10.
The partitioning of bovine trypsin and alpha-chymotrypsin--proteases of similar physico-chemical properties--in different polyethyleneglycol/sodium citrate aqueous two-phase systems was investigated. The effect of different factors such as polyethyleneglycol molecular weight, pH, tie line length, temperature and the presence of an inorganic salt on the protein partition coefficient were analysed. Both a decrease in PEG molecular weight and an increase in pH led to a higher partition coefficient for both enzymes. Aqueous two-phase systems formed by PEG of molecular weight 3350 and citrate pH 5.2 showed the best separation capability which was enhanced in presence of sodium chloride 3%. The transfer of both proteins to the top phase was associated with negative enthalpic and entropic changes.  相似文献   

11.
Alcohol dehydrogenase (ADH) was extracted from a crude bovine liver homogenate by dye-ligand affinity counter-current chromatography (CCC) using a cross-axis coil planet centrifuge (x-axis CPC). The purification was performed using two types of polymer phase systems composed of 4.4% polyethylene glycol (PEG) 8000-7.0% dextran T500-0.1 M potassium phosphate buffers and 16% PEG 1000-12.5% potassium phosphate buffers, both containing a procion red dye as an affinity ligand at various pH values. The best purification was achieved using the PEG 1000-potassium phosphate system at pH 7.3 containing 0.05% procion red as a ligand. The upper PEG-rich phase containing procion red was used as the stationary phase and a crude bovine liver homogenate was eluted with the potassium phosphate-rich lower phase at 0.5 ml/min. After elution of bovine liver proteins in the homogenate, ADH still retained in the stationary phase was collected from the column by eluting with the PEG 1000-rich upper phase. Collected fractions were analyzed by ADH enzymatic activity and by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) to detect contaminant proteins in the ADH fractions. The ADH was purified directly from crude bovine liver extract within 6h with minimum loss of its enzymatic activity.  相似文献   

12.
The aim of this work is to study the partitioning of alpha-amylase from Aspergillus oryzae in polyethylene glycol-potassium phosphate systems formed by polymers of different molecular masses with different total concentrations, several NaCl concentrations and different volume ratio between the phases and at different temperatures. The enzyme was partitioned towards the top phase in the 2000-molecular-mass polyethylene glycol systems and towards the bottom phase in the other systems analyzed with higher molecular mass. The protein-medium interaction parameter (A) was determined; it increased in the same way as PEG molecular mass. The enthalpic and entropic changes found, in general, were negative and were shown to be associated by an entropic-enthalpic compensation effect suggesting that the ordered water structure in the chain of polyetyleneglycol plays a role in protein partition. The recovery in each of the phases was calculated in order to choose the best systems to be applied to enzyme isolation either from a polymer-rich or a polymer-poor phase.Enzymatic activity, circular dichroism and fluorescence were studied for the protein alone and in the presence of the different phases of the aqueous two-phase systems (ATPSs) in order to understand how they affect the enzymatic structure and the role of the protein-polymer interaction in the partitioning process. Secondary structure is not affected, in general, by the presence of the phases that do affect the enzymatic activity; therefore, there should be a change in the tertiary structure in the enzyme active site. These changes are more important for PEG 8000 than for PEG 2000 systems according to the results of the quenching of the intrinsic fluorescence. In a bio-separation process, the A. oryzae alpha-amylase could be isolated with ATPSs PEG 2000/Pi or PEG 8000/Pi with a high recovery, in the top or bottom phases, respectively.  相似文献   

13.
The binding of polyethyleneglycol of molecular mass 1000, 3300 and 6000 and polyethylene-propylene oxide (molecular mass 8400) to lysozyme and ovoalbumin was measured by isothermal calorimetric titration. A binding process was found to be associated with a saturation effect, which suggests a protein-polymer interaction. The proteins showed an affinity for the polymers in the order of 10(2)M(-1) and it decreased with the increase in the polymer molecular mass. The number of polymer molecules bound per protein molecule varied from 0.01 to 0.2 for polyethyleneglycol 1000, 3300 and polyethylene-polypolypropylene oxide 8400, while for polyethyleneglycol 6000 such number got closer to the unity. The enthalpic change associated with the binding was positive in the order of 1 kcal/mol for lysozyme, while ovoalbumin showed values around 2-3 kcal/mol. Entropic changes were also positive with values around 17-20 e.u. for ovoalbumin and 1-7 e.u. for lysozyme. The heat associated with the protein transfer from a buffer to a medium containing the polymer or the salt (a process similar to protein partitioning in aqueous two-phase systems) was obtained. These results allow the direct calculation of the enthalpic change associated with a protein partition process in aqueous two-phase systems without applying the van'tHoff equation. In this way, it is possible to calculate the associated true heat when the protein is transferred from the bottom to the top phase.  相似文献   

14.
In a potassium phosphate-poly(ethylene glycol) (PEG) system, RNA partitioning was accompanied by adsorption at the interface, depending on the molecular mass. Low-molecular-mass RNA showed the typical partition behavior of a soluble substance. Conversely, high-molecular-mass RNA was significantly adsorbed at the interface in the potassium phosphate-PEG1500 system. The adsorbed amount was proportional to the added amount, regardless of the phase volume ratio. The partitioning of high-molecular-mass RNA showed an amount-ratio-dependent distribution like that of a particle.  相似文献   

15.
Pepsin D: A minor component of commercial pepsin preparations   总被引:7,自引:6,他引:1       下载免费PDF全文
Methods are described for the isolation and purification of pepsin D, an enzyme which accounts for about 10% of the enzymic activity in commercial preparations of pepsin. Pepsin D is similar to pepsin in having a molecular weight of about 35000, the same C-terminal amino acid sequence, and an N-terminal isoleucine residue. It differs in having no phosphate residue. Pepsin D is similar to pepsin in its ability to digest haemoglobin, acetyl-l-phenylalanyl-l-di-iodotyrosine and gelatin but it is twice as active as pepsin in the clotting of milk. It has the same specificity as pepsin in its action on the B-chain of oxidized insulin. It is probable that the pepsin D in commercial preparations of pepsin arises from the activation of gastric pepsinogen D.  相似文献   

16.
1. Two pepsins, designated Pepsin I and Pepsin II, were isolated and partially characterized from the stomach of the adult stage salmon Oncorhynchus keta. This stage is developed in a marine environment. 2. One pepsin, designated Pepsin II, was isolated from the stomach of the juvenile stage salmon Oncorhynchus keta. This stage is developed in an estuarine environment. 3. The enzymes were partially purified by ammonium sulfate precipitation, ion exchange chromatography and gel filtration. 4. Pepsins I and II from adults and Pepsin II from juvenile showed proteolytic activity on acid-denatured hemoglobin with a pH optimum of 3. 5. The mol. wt determined by gel filtration on Sephadex G-100 of Pepsin I from juvenile species was found to be 32,000 whereas a value of 27,000 was determined for Pepsin II from juvenile and adult fish. 6. In contrast with Pepsin II, Pepsin I was activated by NaCl. It is suggested that the appearance of NaCl-activated pepsin would represent and adaptive response of the organism to the change from a low to a high salinity environment.  相似文献   

17.
This work discusses the application of an aqueous two-phase system for the purification of lipases produced by Bacillus sp. ITP-001 using polyethylene glycol (PEG) and potassium phosphate. In the first step, the protein content was precipitated with ammonium sulphate (80% saturation). The enzyme remained in the aqueous solution and was dialyzed against ultra-pure water for 18 h and used to prepare an aqueous two-phase system (PEG/potassium phosphate). The use of different molecular weights of PEG to purify the lipase was investigated; the best purification factor (PF) was obtained using PEG 20,000g/mol, however PEG 8000 was used in the next tests due to lower viscosity. The influence of PEG and potassium phosphate concentrations on the enzyme purification was then studied: the highest FP was obtained with 20% of PEG and 18% of potassium phosphate. NaCl was added to increase the hydrophobicity between the phases, and also increased the purification factor. The pH value and temperature affected the enzyme partitioning, with the best purifying conditions achieved at pH 6.0 and 4°C. The molecular mass of the purified enzyme was determined to be approximately 54 kDa by SDS-PAGE. According to the results the best combination for purifying the enzyme is PEG 8000g/mol and potassium phosphate (20/18%) with 6% of NaCl at pH 6.0 and 4°C (201.53 fold). The partitioning process of lipase is governed by the entropy contribution.  相似文献   

18.
Larval stomach development was studied in the obligate carnivorous larva of the frog Lepidobatrachus laevis . Pepsin producing cells of the larval stomach were identified using rabbit anti-porcine pepsin and immunohistochemical techniques. Pepsin production was detected at a very early stage of development (stage 24: during opercular development) when the larvae were first competent for feeding. Peptic activity in isolated larval stomachs was demonstrated in a microassay using acid denatured hemoglobin at pH 1.7. The total activity per stomach increased 5,400 fold through the beginning of metamorphosis and the specific activity increased 345 fold through the same period. Electrophoretic analysis of the larval pepsinogens, using a caseinolytic assay revealed the presence of one major pepsinogen at stage 24; two additional isozymes were observed during later larval development. The molecular weight of the isopepsinogens was 34,800.  相似文献   

19.
A recombinant human antibody expressed in corn was purified using aqueous two‐phase extraction. The antibody was an immunoglobulin G fully unglycosylated. Using systems of different compositions and/or pHs in each of one or two partitioning stages followed by one more stage in which the antibody was precipitated at the liquid/liquid interface facilitated the removal of different impurities in each stage. The best system yields a product 72% pure (22‐fold purification) with a yield of 49%. The optimum extraction was done in two partitioning stages followed by an interfacial precipitation stage using poly(ethylene)glycol/potassium phosphate systems. NaCl was added to the first stage to eliminate large molecular weight impurities. The pH in the first stage was kept at 6 but a pH of 8 was used in the second stage and in the precipitation stage. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

20.
In order to develop possible correlations to predict partioning behaviour of proteins, five mammalian albumins (goat, bovine, equine, human and pig ones) with similar physico-chemical properties (molecular mass and isoelectrical point) were chosen. Evaluation of the relationship between hydrophobicity and partitioning coefficient (Kr) in polyethylenglycol-dextran (PEG-DxT500) systems formed by polyethyleneglycols of different molecular mass (3350, 6000 and 10,000) was investigated by estimating relative surface hydrophobicity (So) with a fluorescent probe, 1 anilino-8-naphthalene sulfonate. No relationship between Kr and So was found for systems formed by PEG3350, while aqueous two-phase systems with PEG6000 and PEG10,000 gave better correlations. The results obtained may be explained on the basis of an increase in the interaction between the latter PEGs and the protein due to their higher hydrophobic character which increases as the PEG molecular mass does so. In this way, systems with PEGs of higher molecular mass give the highest resolution to exploit hydrophobicity in partitioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号