首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Conservation of forested riparian ecosystems is of international concern. Relatively little is known of the structure, composition, diversity, and extent of riparian ecosystems in Mexico. We used high- and low-resolution satellite imagery from 2000 to 2006, and ground-based sampling in 2006, to assess the spatial pattern, extent, and woody plant composition of riparian forests across a range of spatial scales for the state of Sonora, Mexico. For all 3rd and higher order streams, river bottomlands with riparian forests occupied a total area of 2,301 km2. Where forested bottomlands remained, on average, 34% of the area had been converted to agriculture while 39% remained forested. We estimated that the total area of riparian forest along the principal streams was 897 km2. Including fencerow trees, the total forested riparian area was 944 km2, or 0.5% of the total land area of Sonora. Ground-based sampling of woody riparian vegetation consisted of 92, 50 m radius circular plots. About 79 woody plant species were noted. The most important tree species, based on cover and frequency, were willow species Salix spp. (primarily S. goodingii and S. bonplandiana), mesquite species Prosopis spp. (primarily P. velutina), and Fremont cottonwood Populus fremontii. Woody riparian taxa at the reach scale showed a trend of increasing diversity from north to south within Sonora. Species richness was greatest in the willow-bald cypress Taxodium distichum var. mexicanum—Mexican cottonwood P. mexicana subsp. dimorphia ecosystem. The non-native tamarisk Tamarix spp. was rare, occurring at just three study reaches. Relatively natural stream flow patterns and fluvial disturbance regimes likely limit its establishment and spread.  相似文献   

2.
Johnson DW 《Oecologia》2008,155(1):43-52
The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees—soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using δ18O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000–30,000 mg L−1.  相似文献   

3.
We examined the effect of sustained stream bank seepage during base flow conditions on the pore water nitrogen biogeochemistry of two riparian zones in lowland agricultural areas in southern Ontario, Canada. Nitrate, ammonium and dissolved oxygen concentrations in riparian subsurface water over a two-year period showed well-organized spatial patterns along stream bank seepage flow paths that extended seasonally up to 25 m inland. High levels of dissolved oxygen and NO3 in stream inflow were depleted rapidly at the stream bank interface suggesting the occurrence of aerobic microbial respiration followed by denitrification. A zone of NH4+ accumulation persisted in more anaerobic sediments inland from the bank margin, although the magnitude and intensity of the pattern varied seasonally. A bromide tracer and NO3 co-injection at the stream bank interface indicated that bank seepage occurred along preferential flow paths in a poorly sorted gravel layer in the two riparian zones. Depletion of NO3 in relation to co-injected bromide confirmed that the bank margin was a hot spot of biogeochemical activity within the riparian zone. Conceptual models of humid temperate riparian zones have focused on nitrogen biogeochemistry in relation to hillslope to stream hydrologic flow paths. However, our results suggest that sustained stream bank inflow during low flow conditions can exert a dominant control on riparian nitrogen cycling in lowland landscapes where level riparian zones bounded by perennial streams receive limited subsurface inflows from adjacent slopes.  相似文献   

4.
Riparian buffer strips may protect streams from phosphorus (P) pollution. We compared 2 years of daily P-yield (μg m−2 day−1) from six southeast Wisconsin watersheds with contrasting riparian buffer attributes. Of the variables measured, mean daily P-yield was most closely correlated with the variability in riparian patch size. Variability in P-yield was most closely correlated with characteristics of the riparian buffer, such as percent wetland land cover, riparian continuity, and stream sinuosity. During the most extreme events, mean P-yield was negatively correlated with the percentage of wetland land cover in the upland watershed. Correlations suggest that riparian continuity may influence P-loading in these watersheds. Our results corroborate the importance of continuity and uniformity of riparian buffers as moderators of P flow from upland agricultural lands into streams. Received 1 June 2001; accepted 5 February 2002.  相似文献   

5.
Spatial and temporal variation in islands of fertility in the Sonoran Desert   总被引:10,自引:2,他引:8  
In many arid and semi-arid ecosystems, canopy trees and shrubs have a strong positive influence on soil moisture and nutrient availability, creating islands of fertility where organic matter and nutrients are high relative to areas outside the canopy. Previous studies of canopy effects on soil processes have rarely considered how landscape context may modulate these effects. We measured the effects of velvet mesquite trees (Prosopis velutina) on soil moisture and the biogeochemistry of nitrogen at different positions along a topographic gradient from upland desert to riparian zone in the Sonoran Desert of central Arizona. We also examined how landscape position and patterns of precipitation interact to determine the influence of P. velutina on soil moisture, N availability assessed using ion exchange resins, net N mineralization and net nitrification, and microbial biomass C and N. P. velutina clearly created islands of fertility with higher soil organic matter, net N mineralization and net nitrification rates, and microbial biomass under mesquite canopies. These effects were consistent across the landscape and showed little temporal variability. Magnitude and direction of effect of mesquite on soil moisture changed with landscape position, from positive in the upland to negative in the terrace, but only when soil moisture was >4%. Resin N showed responses to mesquite that depended on precipitation and topographic position, with highest values during wet seasons and under mesquite on terraces. We suggest changes in proximity of P. velutina to groundwater lead to shifts in biogeochemical processes and species interactions with change in landscape position along a topographic gradient.  相似文献   

6.
We examined patterns of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) loading to a small urban stream during baseflow and stormflow. We hypothesized that lower DOC and TDN contributions from impervious surfaces would dilute natural hydrologic flowpath (i.e., riparian) contributions during storm events in an urban watershed, resulting in lower concentrations of DOC and TDN during storms. We tested these hypotheses in a small urban watershed in Portland, Oregon, over a 3-month period during the spring of 2003. We compared baseflow and stormflow chemistry using Mann–Whitney tests (significant at p<0.05). We also applied a mass balance to the stream to compare the relative significance of impervious surface contributions versus riparian contributions of DOC and TDN. Results showed a significant increase in stream DOC concentrations during stormflows (median baseflow DOC = 2.00 mg l−1 vs. median stormflow DOC = 3.46 mg l−1). TDN streamwater concentrations, however, significantly decreased with stormflow (median baseflow TDN = 0.75 mg l−1 vs. median stormflow TDN = 0.56 mg l−1). During storms, remnant riparian areas contributed 70–74% of DOC export and 38–35% of TDN export to the stream. The observed pattern of increased DOC concentrations during stormflows in this urban watershed was similar to patterns found in previous studies of forested watersheds. Results for TDN indicated that there were relatively high baseflow nitrogen concentrations in the lower watershed that may have partially masked the remnant riparian signal during stormflows. Remnant riparian areas were a major source of DOC and TDN to the stream during storms. These results suggest the importance of preserving near-stream riparian areas in cities to maintain ambient carbon and nitrogen source contributions to urban streams.  相似文献   

7.
Abstract. The influence of canopy trees and shrubs on under‐storey plants is complex and context‐dependent. Canopy plants can exert positive, negative or neutral effects on production, composition and diversity of understorey plant communities, depending on local environmental conditions and position in the landscape. We studied the influence of Prosopis velutina (mesquite) on soil moisture and nitrogen availability, and understorey vegetation along a topographic gradient in the Sonoran Desert. We found significant increases in both soil moisture and N along the gradient from desert to riparian zone. In addition, P. velutina canopies had positive effects, relative to open areas, on soil moisture in the desert, and soil N in both desert and intermediate terrace. Biomass of understorey vegetation was highest and species richness was lowest in the riparian zone. Canopies had a positive effect on biomass in both desert and terrace, and a negative effect on species richness in the terrace. The effect of the canopy depended on landscape position, with desert canopies more strongly influencing soil moisture and biomass and terrace canopies more strongly influencing soil N and species richness. Individual species distributions suggested interspecific variation in response to water‐ vs. N‐availability; they strongly influence species composition at both patch and landscape position levels.  相似文献   

8.
We evaluated (1) the longitudinal pattern of stream chemistry and (2) the effects of the riparian zone on this longitudinal pattern for nitrate (NO3 ), dissolved organic carbon (DOC), and total dissolved iron (Fe). We selected two small watersheds; the “southern watershed” had an extending riparian wetland and the “northern watershed” had a narrow riparian area. Stream NO3 concentrations decreased from the spring to outlet of both watersheds. In the southern watershed, stream DOC concentration decreased from the spring to midstream and then increased to the outlet. Stream Fe concentration in the southern watershed longitudinally increased. On the other hand, the northern watershed exhibited no longitudinal pattern for DOC and Fe concentrations. In both watersheds, while NO3 concentrations in the soil and ground water were lower than those in the stream waters, DOC and Fe concentrations exhibited the opposite patterns. The longitudinal decreases of NO3 concentrations in both streams and increase of stream Fe in the southern watershed mainly resulted from the inflow of the soil and ground water to the stream. The decrease in stream DOC from the spring to midstream in the southern watershed was due to the deep groundwater having low DOC, while the subsequent increase to the surrounding soil and ground water. Moreover, considerations of stream solute flow with soil and ground water chemistry suggested other mechanisms adding NO3 and removing/diluting DOC and Fe, especially for the northern watershed; coexistence of oxidizing and reducing conditions in the riparian zone might control the longitudinal concentration change in the stream water chemistry.  相似文献   

9.
We measured the impact of riparian zone vegetation on ecosystem metabolism in paired forested and meadow reaches on 13 streams in southeastern Pennsylvania and Maryland, USA. Metabolism estimates were based on open-system measurements of dissolved oxygen changes, with reaeration determined from propane evasion. Daily gross primary productivity (GPP) in meadow and forested reaches averaged 2.85 and 0.86 g O2 m−2 d−1, respectively, at water temperatures of 12°C or greater when the forest canopy was developed and 1.74 and 1.09 g O2 m−2 d−1, respectively, at temperatures below 12°C when the canopy was bare. Community respiration (CR24) also was greater in meadow reaches than in forested reaches, averaging 5.58 and 3.57 g O2 m−2 d−1, respectively, in the warm season and 4.87 and 2.88 g O2 m−2 d−1, respectively, during the cold season. Thus, both meadow and forested reaches were heterotrophic. Forested reaches were always wider and nearly always shallower than companion meadow reaches. When ecosystem function was assessed per unit of stream length, the difference in average GPP between meadow and forested reaches was reduced from three-fold to 1.9-fold in the warm season, and mean GPP was greater in the forested reaches during the cold season. Mean CR24 per meter stream length was greater in forested reaches during both seasons. Even though riparian shading reduced primary productivity per unit area of streambed, the greater stream width of the forested reaches counteracted that reduction in part. Thus, when rates of ecosystem function were expressed per length of stream, differences between reaches were always smaller than when expressed per area, and activity per unit stream length was sometimes greater in forested reaches than in meadow reaches.  相似文献   

10.
Riparian zones effectively remove nitrogen (N) from water flowing through riparian soils, particularly in agricultural watersheds. The mechanism of N removal is still unclear, especially the role of vegetation. Uptake and denitrification are the two most commonly studied mechanisms. Retention of groundwater N by plant uptake is often inferred from measurements of N in net incremental biomass. However, this assumes other sources of N are not contributing to the N demand of plants. The purpose of this work was to investigate the relative importance of three sources of available N to riparian trees in a desert stream—input in stream water during floods, input during baseflow, and mineralization of N from soil organic matter. Two approaches were used; a mass balance approach in which the mass of available N from each source was estimated, and a correlational approach in which indexes of each source were compared to leaf N for individual willow trees. Total N from all sources was 396 kg ha−1 y−1, with 172 kg ha−1 y−1 from mineralization, 214 kg ha−1 y−1 from the stream during baseflow, and 9.6 kg ha−1 y−1 from floods. Leaf N was significantly related to N mineralization rates and flood inputs; it was not related to baseflow inputs. We conclude that mineralization is a major source of available N for willow trees, subsidized by input of N from floods. Baseflow inputs are most likely removed by rapid denitrification at the stream–riparian edge, while higher rates of flood supply exceed the capacity of this “filter.” Received 18 January 2001; accepted 15 June 2001.  相似文献   

11.
Metal pollution, in combination with other environmental stressors such as acid deposition and climate change, may disturb metal biogeochemical cycles. To investigate the influence of dissolved organic carbon, acidity and seasonality on metal geochemistry, this study has described concentrations of 19 metals as they pass through an acidified forested catchment on the Precambrian Shield in south-central Ontario, Canada. Metal, dissolved organic carbon (DOC) and sulphate (SO4 2−) concentrations fluctuate throughout the catchment compartments as the water passes through and interacts with vegetation, soils and bedrock. Relationships among metals, DOC and SO4 2− are most pronounced in compartments where DOC and SO4 2− exhibit high variability, namely in the throughfall, organic horizon soil water, and wetland-draining stream. Metal, DOC and SO4 2− concentrations varied seasonally in the streams, and temporal coherence occurred among metal, DOC and SO4 2− concentrations in the organic horizon soil water and the wetland-draining stream (PC1). In the wetland-draining stream, the highest DOC, Cr, Cu, Fe, Pb, and V concentrations occur in the summer, whereas concentrations of SO4 2− and most other metals peak in the fall after a period of drought. Despite the rural location, provincial water quality objectives for surface water were exceeded for many metals when the peak fall values occurred.  相似文献   

12.
The emergence of 17-year periodical cicadas in Maryland, USA, in 2004 provided a unique opportunity to study the effect of a large, but temporally limited, resource pulse of arthropod detritus on stream ecosystem function. Cicada emergence was quantified in the forests adjacent to two small streams with different histories of riparian disturbance (Intact and Disturbed sites). We estimated the input of cicada detritus to the streams, described its retention and breakdown dynamics, and measured whole-stream respiration over the cicada flight season (May–July). Average emergence density was significantly greater at the Intact site, but average cicada detritus input rates were greater at the Disturbed site. Cicada detritus was locally retained within both streams and rapidly broke down. Daily whole-stream respiration (CR24) at both sites responded dramatically to the cicada pulse, with CR24 doubling pre-cicada measurements following the period of greatest cicada input (Intact: 12.82 → 23.78 g O2 m−2 d−1; Disturbed: 2.76 → 5.77 g O2 m−2 d−1). CR24 returned to baseline levels when cicada input decreased at the Intact site, but more than doubled again at the Disturbed site (13.14 g O2 m−2 d−1), despite a decline in cicada input rate. Differences in respiration response may be a function of differences in cicada input rates as well as differences in microbial community activity. The strong effects on stream ecosystem function exerted by a short but intense input of periodical cicada detritus may provide insights regarding the response of streams to other irregular resource pulses. HM, MP, LC, and DR conceived and designed study; HM, LC, and DR performed research; HM, LC, and DR analyzed data; HM, MP, LC, and DR wrote the paper.  相似文献   

13.
We examined the influence of riparian vegetation on macroinvertebrate community structure in streams of the Upper Thames River watershed in southwestern Ontario. Thirty-three μ-basins (129–1458 ha) were used to identify land cover variables that influenced stream macroinvertebrates. Micro-basins represented the entire drainage area of study streams and were similar in stream order (first, second) and land cover (agricultural or forest; no urban). We described the structure and composition of riparian vegetation and benthic macroinvertebrate communities at the outflow reach. The nature of the land cover was quantified for the stream network buffer (30 m) and the whole μ-basin. The objective of this study was to measure the magnitude and nature of the relationship between the riparian vegetation and benthic macroinvertebrate community at the outflow reach, stream network buffer, and whole μ-basin scales. Taxon richness (including total number of Ephemeroptera, Plecoptera, and Trichoptera taxa) and Simpson’s diversity of the macroinvertebrate community all increased with increased tree cover in the riparian zone at the outflow reach scale. Simpson’s equitability was lower with greater agricultural land cover in the stream network buffer. No relationship between the macroinvertebrate community and land cover was found at the whole μ-basin scale. Analysis of the influence of land cover on stream communities within a spatial hierarchy is important for understanding the interactions of stream ecosystems with their adjacent landscapes.  相似文献   

14.
Methanogenesis in Arizona,USA dryland streams   总被引:1,自引:0,他引:1  
Methanogenesis was studied in five streams of central and southern Arizona by examining the distribution of methane in interstitial water and evasion of methane in three subsystems (hyporheic, parafluvial and bank sediments). In Sycamore Creek, the primary study site (studied during summer and early autumn), methane content of interstitial water exhibited a distinct spatial pattern. In hyporheic (sediments beneath the wetted channel) and parfluvial zones (active channel sediments lateral to the wetted channel), which were well oxygenated due to high hydrologic exchange with the surface stream and had little particulate organic matter (POM), interstitial methane concentration averaged only 0.03 mgCH4-C/L. Bank sediments (interface between the active channel and riparian zone), in contrast, which were typically vegetated, had high POM, low hydrologic exchange and concomitantly low dissolved oxygen levels, had interstitial concentration averaging 1.5 mgCH4-C/L. Methane emission from Sycamore Creek, similar to methane concentration, averaged only 3.7 mgCH4-C·m−2·d−1 from hyporheic and parafluvial zones as opposed to 170 mgCH4-C·m−2·d−1 from anoxic bank sediments. Methane in four additional streams sampled (one sampling date during late winter) was low and exhibited little spatial variation most likely due to cooler stream temperatures. Interstitial methane in parafluvial and bank sediments of all four streams ranged from only 0.005 to 0.1 mgCH4-C/L. Similarly methane evasion was also low from these streams varying from 0 to 5.7 mgCH4-C·m−2·d−1. The effects of organic matter and temperature on methanogenesis were further examined by experimentally manipulating POM and temperature in stoppered flasks filled with hyporheic sediments and stream water. Methane production significantly increased with all independent variables. Methane production is greatest in bank sediments that are relatively isolated hydrologically and lowest in hyporheic and parafluvial sediments that are interactive with the surface stream.  相似文献   

15.
Riffle beetle community structure is influenced by the preservation condition of stream riparian vegetation. Though, the width of riparian vegetation required to ensure conservation of stream insect communities is still controversial. Effects of alterations in riparian vegetation widths on stream insect community structure can be overcame by other environmental variables, like substrate type, hindering accurate assessments. We tested the effects of different riparian vegetation widths (>40, 30–15, 15–5 and <5 m) along with different substrate types (inorganic and organic) on riffle beetle community structure in southern Brazilian 4th‐ to 5th‐order streams. Riparian buffer widths and substrate types influenced riffle beetle community structure, but no interaction between them was observed. Reduced riparian vegetation widths downstream were associated with changes in riffle beetle dominant genera (Macrelmis predominated only in streams with narrowest riparian widths). Additionally, communities in organic substrates had lower equitability and different dominant genera (Hexacylloepus and Heterelmis) than inorganic ones. Our results showed that reductions in riparian vegetation were associated with water pollution and changes in riffle beetle community structure, suggesting that buffer strips narrower than 5 m are not adequate to maintain environmental integrity of southern Brazilian streams. These results have special importance for the conservation of stream insects in Brazil, as reductions up to less than 5 m in stream banks of small properties are allowed by the new Brazilian Forest Code, independently of stream order.  相似文献   

16.
Biomass and breakdown of tree roots within streambed sediments were compared with leaf and wood detritus in three Coastal Plain headwater intermittent streams. Three separate riparian forest treatments were applied: thinned, clearcut, and reference. Biomass of roots (live and dead) and leaf/wood was significantly higher in stream banks than in the channel and declined with depth strata (0–10 > 10–20 > 20–30 cm). Riparian roots (live and dead combined) contributed on average 24 and 42% of coarse particulate organic matter (CPOM) biomass within the top 30 cm of channel and streambank sediments, respectively. Estimated mean surface area of live riparian roots within sediments was 1084 cm2 m−3. Streambed temperatures showed greater fluctuation at the clearcut site compared to thinned and reference treatments. However, breakdown rates among buried substrate types or riparian treatments did not differ after 1 y. Slow decay rates were associated initially with anaerobic conditions within sandy sediments and later with dry sediment conditions. Riparian roots represent a direct conduit between streamside vegetation and the hyporheic zone. In addition to contributing to organic matter storage, the abundance of riparian roots within streambed sediments suggests that roots play an important role in biogeochemical cycling within intermittent headwater streams of the Coastal Plain.  相似文献   

17.
The influence of land use on potential fates of nitrate (NO3 ) in stream ecosystems, ranging from denitrification to storage in organic matter, has not been documented extensively. Here, we describe the Pacific Northwest component of Lotic Intersite Nitrogen eXperiment, phase II (LINX II) to examine how land-use setting influences fates of NO3 in streams. We used 24 h releases of a stable isotope tracer (15NO3-N) in nine streams flowing through forest, agricultural, and urban land uses to quantify NO3 uptake processes. NO3 uptake lengths varied two orders of magnitude (24–4247 m), with uptake rates (6.5–158.1 mg NO3-N m−2 day−1) and uptake velocities (0.1–2.3 mm min−1) falling within the ranges measured in other LINX II regions. Denitrification removed 0–7% of added tracer from our streams. In forest streams, 60.4 to 77.0% of the isotope tracer was exported downstream as NO3 , with 8.0 to 14.8% stored in wood biofilms, epilithon, fine benthic organic matter, and bryophytes. Agricultural and urban streams with streamside forest buffers displayed hydrologic export and organic matter storage of tracer similar to those measured in forest streams. In agricultural and urban streams with a partial or no riparian buffer, less than 1 to 75% of the tracer was exported downstream; much of the remainder was taken up and stored in autotrophic organic matter components with short N turnover times. Our findings suggest restoration and maintenance of riparian forests can help re-establish the natural range of NO3 uptake processes in human-altered streams.  相似文献   

18.
Nitrate, ammonium, dissolved organic N, and dissolved oxygen were measured in stream water and shallow groundwater in the riparian zones of two tropical watersheds with different soils and geomorphology. At both sites, concentrations of dissolved inorganic N (DIN; NH4 +- and NO3 -N) were low in stream water (< 110 ug/L). Markedly different patterns in DIN were observed in groundwater collected at the two sites. At the first site (Icacos watershed), DIN in upslope groundwater was dominated by NO3 -N (550 ug/L) and oxygen concentrations were high (5.2 mg/L). As groundwater moved through the floodplain and to the stream, DIN shifted to dominance by NH4 +-N (200–700 ug/L) and groundwater was often anoxic. At the second site (Bisley watershed), average concentrations of total dissolved nitrogen were considerably lower (300 ug/L) than at Icacos (600 ug/L), and the dominant form of nitrogen was DON rather than inorganic N. Concentrations of NH4 + and NO3 were similar throughout the riparian zone at Bisley, but concentrations of DON declined from upslope wells to stream water. Differences in speciation and concentration of nitrogen in groundwater collected at the two sites appear to be controlled by differences in redox conditions and accessibility of dissolved N to plant roots, which are themselves the result of geomorphological differences between the two watersheds. At the Icacos site, a deep layer of coarse sand conducts subsurface water to the stream below the rooting zone of riparian vegetation and through zones of strong horizontal redox zonation. At the Bisley site, infiltration is impeded by dense clays and saturated flow passes through the variably oxidized rooting zone. At both sites, hydrologic export of nitrogen is controlled by intense biotic activity in the riparian zone. However, geomorphology appears to strongly modify the importance of specific biotic components.  相似文献   

19.
In forested streams, surrounding riparian forests provide essential supplies of organic matter to aquatic ecosystems. We focused on two pathways of particulate organic matter inputs: direct input from upper riparian forests and indirect lateral input from bank slopes, for which there are limited quantitative data. We investigated the inputs of coarse particulate organic matter (CPOM) and carbon and nitrogen in the CPOM into the uppermost reaches of a headwater stream with steep bank slopes in Hokkaido, Japan. CPOM collected by litter traps was divided into categories (e.g., leaves, twigs) and weighed. Monthly nitrogen and carbon inputs were also estimated. The annual direct input of CPOM (ash-free dry mass) was 472 g m−2, a common value for temperate riparian forests. The annual lateral CPOM input was 353 g m−1 and 941 g m−2 when they were converted to area base. This value surpassed the direct input. Organic matter that we could not separate from inorganic sediments contributed to the total lateral input from the bank slopes (124 g m−1); this organic matter contained relatively high amounts of nitrogen and carbon. At uppermost stream reaches, the bank slope would be a key factor to understanding the carbon and nitrogen pathways from the surrounding terrestrial ecosystem to the aquatic ecosystem.  相似文献   

20.
The modification of large areas of tropical forest to agricultural uses has consequences for the movement of inorganic nitrogen (N) from land to water. Various biogeochemical pathways in soils and riparian zones can influence the movement and retention of N within watersheds and affect the quantity exported in streams. We used the concentrations of NO3 and NH4 + in different hydrological flowpaths leading from upland soils to streams to investigate inorganic N transformations in adjacent watersheds containing tropical forest and established cattle pasture in the southwestern Brazilian Amazon Basin. High NO3 concentrations in forest soil solution relative to groundwater indicated a large removal of N mostly as NO3 in flowpaths leading from soil to groundwater. Forest groundwater NO3 concentrations were lower than in other Amazon sites where riparian zones have been implicated as important N sinks. Based on water budgets for these watersheds, we estimated that 7.3–10.3 kg N ha−1 y−1 was removed from flowpaths between 20 and 100 cm, and 7.1–10.2 kg N ha−1 y−1 was removed below 100 cm and the top of the groundwater. N removal from vertical flowpaths in forest exceeded previously measured N2O emissions of 3.0 kg N ha−1 y−1 and estimated emissions of NO of 1.4 kg N ha−1 y−1. Potential fates for this large amount of nitrate removal in forest soils include plant uptake, denitrification, and abiotic N retention. Conversion to pasture shifted the system from dominance by processes producing and consuming NO3 to one dominated by NH4 +, presumably the product of lower rates of net N mineralization and net nitrification in pasture compared with forest. In pasture, no hydrological flowpaths contained substantial amounts of NO3 and estimated N removal from soil vertical flowpaths was 0.2 kg N ha−1 y−1 below the depth of 100 cm. This contrasts with the extent to which agricultural sources dominate N inputs to groundwater and stream water in many temperate regions. This could change, however, if pasture agriculture in the tropics shifts toward intensive crop cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号