首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An effective shotgun cloning procedure was developed for Bacillus megaterium by amplifying gene libraries in Bacillus subtilis. This technique was useful in isolating at least 11 genes from B. megaterium which are involved with cobalamin (vitamin B12) biosynthesis. Amplified plasmid banks were transformed into protoplasts of both a series of Cob mutants blocked before the biosynthesis of cobinamide and Cbl mutants blocked in the conversion of cobinamide into cobalamin. Amplification of gene libraries overcame the cloning barriers inherent in the relatively low protoplast transformation frequency of B. megaterium. A family of plasmids was isolated by complementation of seven different Cob and Cbl mutants. Each plasmid capable of complementing a Cob or Cbl mutant was transformed into each one of the series of Cob and Cbl mutants; many of the plasmids isolated by complementation of one mutation carried genetic activity for complementation of other mutations. By these criteria, four different complementation groups were resolved. At least six genes involved in the biosynthesis of cobinamide are carried on a fragment of DNA approximately 2.7 kilobase pairs in length; other genes involved in the biosynthesis of cobinamide were located in two other complementation groups. The physical and genetic data permitted an ordering of genes within several of the complementation groups. The presence of complementing plasmids in mutants blocked in cobalamin synthesis resulted in restoration of cobalamin biosynthesis.  相似文献   

2.
Salmonella typhimurium is able to synthesize cobalamin (B12) under anaerobic growth conditions. The previously described cobalamin biosynthetic mutations (phenotypic classes CobI, CobII, and CobIII) map in three operons located near the his locus (minute 41). A new class of mutant (CobIV) defective in B12 biosynthesis was isolated and characterized. These mutations map between the cysB and trp loci (minute 34) and define a new genetic locus, cobA. The anaerobic phenotype of cobA mutants suggests an early block in corrin ring formation; mutants failed to synthesize cobalamin de novo but did so when the corrin ring is provided as cobyric acid dicyanide or as cobinamide dicyanide. Under aerobic conditions, cobA mutants were unable to convert either cobyric acid dicyanide or cobinamide dicyanide to cobalamin but could use adenosylcobyric acid or adenosylcobinamide as a precursor; this suggests that the mutants are unable to adenosylate exogenous corrinoids. To explain the anaerobic CobI phenotype of a cobA mutant, we propose that the cobA gene product catalyzes adenosylation of an early intermediate in the de novo B12 pathway and also adenosylates exogenous corrinoids. Under anaerobic conditions, a substitute function, known to be encoded in the main Cob operons, is induced; this substitute function can adenosylate exogenous cobyric acid and cobinamide but not the early biosynthetic intermediate. The cobA gene of S. typhimurium appears to be functionally equivalent to the btuR gene of Escherichia coli.  相似文献   

3.
Cobalamin synthesis probably requires 20 to 30 different enzymatic steps. Pseudomonas putida and Agrobacterium tumefaciens mutants deficient in cobalamin synthesis (Cob have been isolated. In P. putida, Cob mutants were identified as being unable to use ethanolamine as a source of nitrogen in the absence of added cobalamin (deamination of ethanolamine requires coenzyme B12 as a cofactor). In A. tumefaciens, Cob mutants were simply screened for their reduced cobalamin synthesis. A genomic library of Pseudomonas denitrificans was constructed on a mobilizable wide-host-range vector. Eleven plasmids from this library were able to complement most of these mutants. By complementation and restriction mapping analysis, four genomic loci of P. denitrificans were found to be responsible for complementation of the Cob mutants. By subcloning fragments from the four genomic loci, we identified at least 14 different genes involved in cobalamin synthesis.  相似文献   

4.
5.
A pleiotropic mutant of Paracoccus denitrificans, which has a severe defect that affects its anaerobic growth when either nitrate, nitrite, or nitrous oxide is used as the terminal electron acceptor and which is also unable to use ethanolamine as a carbon and energy source for aerobic growth, was isolated. This phenotype of the mutant is expressed only during growth on minimal media and can be reversed by addition of cobalamin (vitamin B(12)) or cobinamide to the media or by growth on rich media. Sequence analysis revealed the mutation causing this phenotype to be in a gene homologous to cobK of Pseudomonas denitrificans, which encodes precorrin-6x reductase of the cobalamin biosynthesis pathway. Convergently transcribed with cobK is a gene homologous to cobJ of Pseudomonas denitrificans, which encodes precorrin-3b methyltransferase. The inability of the cobalamin auxotroph to grow aerobically on ethanolamine implies that wild-type P. denitrificans (which can grow on ethanolamine) expresses a cobalamin-dependent ethanolamine ammonia lyase and that this organism synthesizes cobalamin under both aerobic and anaerobic growth conditions. Comparison of the cobK and cobJ genes with their orthologues suggests that P. denitrificans uses the aerobic pathway for cobalamin synthesis. It is paradoxical that under anaerobic growth conditions, P. denitrificans appears to use the aerobic (oxygen-requiring) pathway for cobalamin synthesis. Anaerobic growth of the cobalamin auxotroph could be restored by the addition of deoxyribonucleosides to minimal media. These observations provide evidence that P. denitrificans expresses a cobalamin-dependent ribonucleotide reductase, which is essential for growth only under anaerobic conditions.  相似文献   

6.
Salmonella typhimurium synthesizes cobalamin (vitamin B12) when grown under anaerobic conditions. All but one of the biosynthetic genes (cob) are located in a single operon which includes genes required for the production of cobinamide and dimethylbenzimidazole, as well as the genes needed to form cobalamin from these precursors. We isolated strains carrying mutations (cobD) which are unlinked to any of the previously described B12 biosynthetic genes. Mutations in cobD are recessive and map at minute 14 of the linkage map, far from the major cluster of B12 genes at minute 41. The cobD mutants appear to be defective in the synthesis of 1-amino-2-propanol, because they can synthesize B12 when this compound is provided exogenously. Labeling studies in other organisms have shown that aminopropanol, derived from threonine, is the precursor of the chain linking dimethylbenzimidazole to the corrinoid ring of B12. Previously, a three-step pathway has been proposed for the synthesis of aminopropanol from threonine, including two enzymatic steps and a spontaneous nonenzymatic decarboxylation. We assayed the two enzymatic steps of the hypothetical pathway; cobD mutants are not defective in either. Furthermore, mutants blocked in one step of the proposed pathway continue to make B12. We conclude that the aminopropanol for B12 synthesis is not made by this pathway. Expression of a lac operon fused to the cobD promoter is unaffected by vitamin B12 or oxygen, both of which are known to repress the main cob operon, suggesting that the cobD gene is not regulated.  相似文献   

7.
Synthesis of the Escherichia coli outer membrane protein BtuB, which mediates the binding and transport of vitamin B12, is repressed when cells are grown in the presence of vitamin B12. Expression of btuB-lacZ fusions was also found to be repressed, and selection for constitutive production of beta-galactosidase in the presence of vitamin B12 yielded mutations at btuR. The btuR locus, at 27.9 min on the chromosome map, was isolated on a 952-base-pair EcoRV fragment, and its nucleotide sequence was determined. The BtuR protein was identified in maxicells as a 22,000-dalton polypeptide, as predicted from the nucleotide sequence. Strains mutant at btuR had negligible pools of adenosylcobalamin but did convert vitamin B12 into other derivatives. Although btuB expression in a btuR strain could not be repressed by cyano- or methylcobalamin, it was repressed by adenosylcobalamin. Growth on ethanolamine as the sole nitrogen source requires adenosylcobalamin. btuR mutants grew on ethanolamine but were affected in the length of the lag period before initiation of growth, which suggested that an alternative route for adenosylcobalamin synthesis might exist. No mutations were found that conferred constitutive btuB expression in the presence of adenosylcobalamin. Other genes near btuR may also be involved in cobalamin metabolism, as suggested from the complementation behavior of strains generated by excision of the Tn10 element in btuR. These results indicated that the btuR product is involved in the metabolism of adenosylcobalamin and that this cofactor, or some derivative, controls btuB expression.  相似文献   

8.
9.
A 6.4-kb region of a 6.8-kb BamHI fragment carrying Rhodobacter capsulatus genes involved in late steps of cobalamin synthesis has been sequenced. The nucleotide sequence and genetic analysis revealed that this fragment contains eight genes arranged in at least three operons. Five of these eight genes show homology to genes involved in the cobalamin synthesis of Pseudomonas denitrificans and Salmonella typhimurium. The arrangement of these homologous genes differs considerably in the three genera. Upstream of five overlapping genes (named bluFEDCB), a promoter activity could be detected by using lacZ fusions. This promoter shows no regulation by oxygen, vitamin B12 (cobalamin), or cobinamide. Disruption of the bluE gene by a Tn5 insertion (strain AH2) results in reduced expression of the puf and puc operons, which encode pigment-binding proteins of the photosynthetic apparatus. The mutant strain AH2 can be corrected to a wild-type-like phenotype by addition of vitamin B12 or cobinamide dicyanide. Disruption of the bluB gene by an interposon (strain BB1) also disturbs the formation of the photosynthetic apparatus. The mutation of strain BB1 can be corrected by vitamin B12 but not by cobinamide. We propose that a lack of cobalamin results in deregulation and a decreased formation of the photosynthetic apparatus.  相似文献   

10.
11.
Ethanolamine utilization in Salmonella typhimurium.   总被引:20,自引:16,他引:4       下载免费PDF全文
  相似文献   

12.
13.
In this paper, we report that the enteric bacterium Salmonella typhimurium synthesized cobalamin de novo under anaerobic culture conditions. Aerobically, metE mutants of S. typhimurium need either methionine or cobalamin as a nutritional supplement for growth. The growth response to cobalamin depends upon a cobalamin-requiring enzyme, encoded by the gene metH, that catalyzes the same reaction as the metE enzyme. Anaerobically, metE mutants grew without any nutritional supplements; the metH enzyme functioned under these conditions due to the endogenous biosynthesis of cobalamin. This conclusion was confirmed by using a radiochemical assay to measure cobalamin production. Insertion mutants defective in cobalamin biosynthesis (designated cob) were isolated in the three major branches of the cobalamin biosynthetic pathway. Type I mutations blocked the synthesis of cobinamide, type II mutations blocked the synthesis of 5,6-dimethylbenzimidazole, and type III mutations blocked the synthesis of cobalamin from cobinamide and 5,6-dimethylbanzimidazole. Mutants that did not synthesize siroheme (cysG) were blocked in cobalamin synthesis. Genetic mapping experiments showed that the cob mutations are clustered in the region of the S. typhimurium chromosome between supD (40 map units) and his (42 map units). The discovery that S. typhimurium synthesizes cobalamin de novo only under anaerobic conditions raises the possibility that anaerobically grown cells possess a variety of enzymes which are dependent upon cobalamin as a cofactor.  相似文献   

14.
Nitric oxide (NO) is an important signaling molecule, and a number of NO synthesis inhibitors and scavengers have been developed to allow study of NO functions and to reduce excess NO levels in disease states. We showed previously that cobinamide, a cobalamin (vitamin B12) precursor, binds NO with high affinity, and we now evaluated the potential of cobinamide as a NO scavenger in biologic systems. We found that cobinamide reversed NO-stimulated fluid secretion in Drosophila Malpighian tubules, both when applied in the form of a NO donor and when produced intracellularly by nitricoxide synthase. Moreover, feeding flies cobinamide markedly attenuated subsequent NO-induced increases in tubular fluid secretion. Cobinamide was taken up efficiently by cultured rodent cells and prevented NO-induced phosphorylation of the vasodilator-stimulated phosphoprotein VASP both when NO was provided to the cells and when NO was generated intracellularly. Cobinamide appeared to act via scavenging NO because it reduced nitrite and nitrate concentrations in both the fly and mammalian cell systems, and it did not interfere with cGMP-induced phosphorylation of VASP. In rodent and human cells, cobinamide exhibited toxicity at concentrations > or =50 microM with toxicity completely prevented by providing equimolar amounts of cobalamin. Combining cobalamin with cobinamide had no effect on the ability of cobinamide to scavenge NO. Cobinamide did not inhibit the in vitro activity of either of the two mammalian cobalamin-dependent enzymes, methionine synthase or methylmalonyl-coenzyme A mutase; however, it did inhibit the in vivo activities of the enzymes in the absence, but not presence, of cobalamin, suggesting that cobinamide toxicity was secondary to interference with cobalamin metabolism. As part of these studies, we developed a facile method for producing and purifying cobinamide. We conclude that cobinamide is an effective intra- and extracellular NO scavenger whose modest toxicity can be eliminated by cobalamin.  相似文献   

15.
The enteric bacterium Escherichia coli synthesizes cobalamin (coenzyme B12) only when provided with the complex intermediate cobinamide. Three cobalamin biosynthetic genes have been cloned from Escherichia coli K-12, and their nucleotide sequences have been determined. The three genes form an operon (cob) under the control of several promoters and are induced by cobinamide, a precursor of cobalamin. The cob operon of E. coli comprises the cobU gene, encoding the bifunctional cobinamide kinase-guanylyltransferase; the cobS gene, encoding cobalamin synthetase; and the cobT gene, encoding dimethylbenzimidazole phosphoribosyltransferase. The physiological roles of these sequences were verified by the isolation of Tn10 insertion mutations in the cobS and cobT genes. All genes were named after their Salmonella typhimurium homologs and are located at the corresponding positions on the E. coli genetic map. Although the nucleotide sequences of the Salmonella cob genes and the E. coli cob genes are homologous, they are too divergent to have been derived from an operon present in their most recent common ancestor. On the basis of comparisons of G+C content, codon usage bias, dinucleotide frequencies, and patterns of synonymous and nonsynonymous substitutions, we conclude that the cob operon was introduced into the Salmonella genome from an exogenous source. The cob operon of E. coli may be related to cobalamin synthetic genes now found among non-Salmonella enteric bacteria.  相似文献   

16.
Sharma VS  Pilz RB  Boss GR  Magde D 《Biochemistry》2003,42(29):8900-8908
Despite early claims that nitric oxide does not react with cobalamin under any circumstances, it is now accepted that NO has a high affinity for cobalamin in the 2+ oxidation state [Cbl(II)]. However, it is still the consensus that NO does not react with Cbl(III). We confirmed that NO coordinates to Cbl(II) at all pH values and that Cbl(III) does not react with NO at neutral pH. At low pH, however, Cbl(III) does react with NO by way of a two-step process that also reduces Cbl(III) to Cbl(II). To account for the pH dependence, and because of its intrinsic interest, we also studied reactions of NO with cobinamide [Cbi] in the 2+ and 3+ oxidation states. Both Cbi(II) and Cbi(III) react readily with NO at all pH values. Again, Cbi(III) is reduced during the process of coordinating NO. Compared to cobalamin, cobinamide lacks the tethered 5,6-dimethylbenzamidazolyl moiety bound to the cobalt ion. It may, therefore, be considered a "base-off" form of Cbl. To explain the reaction of Cbl(III) at low pH, we infer that the base-off form of Cbl(III) exists in trace amounts that are rapidly reduced to Cbl(II), which then binds NO efficiently. Base dissociation, we postulate, is the rate-limiting step. Interestingly, Cbi(II) has 100 times greater affinity for NO than does Cbl(II), proving that there is a strong trans effect due to the tethered base in nitrosyl derivatives of both Cbl(II) and Cbl(III). The affinity of Cbi(II) for NO is so high that it is a very efficient NO trap and, consequently, may have important biomedical uses.  相似文献   

17.
Approximately 500 vitamin B6 auxotrophs were isolated from 18 independent cultures of Escherichia coli strain CR63. None grew in minimal medium supplemented with 2'-hydroxypyridoxine. Eighteen auxotrophs which had arisen independently were further characterized. All of them were defective in vitamin B6 synthesis rather than in an aminotransferase involved in vitamin B6 utilization. Two different phenotypes were recognized: 'Oxidase' mutants which grew only when supplied with pyridoxal or pyridoxal 5'-phosphate and 'Pre Pn' mutants which would also grow with pyridoxine or pyridoxine phosphate. "Oxidase' mutants were confined to a single linkage group, but data from interrupted mating experiments established that 'Pre Pn' mutants fall into two linkage groups which are possibly identical to pdxA and pdxB. All mutations in the in the pdxA region were allelic rather than located in two closely linked genes.  相似文献   

18.
Using comparative analysis of genes, operons, and regulatory elements, we describe the cobalamin (vitamin B12) biosynthetic pathway in available prokaryotic genomes. Here we found a highly conserved RNA secondary structure, the regulatory B12 element, which is widely distributed in the upstream regions of cobalamin biosynthetic/transport genes in eubacteria. In addition, the binding signal (CBL-box) for a hypothetical B12 regulator was identified in some archaea. A search for B12 elements and CBL-boxes and positional analysis identified a large number of new candidate B12-regulated genes in various prokaryotes. Among newly assigned functions associated with the cobalamin biosynthesis, there are several new types of cobalt transporters, ChlI and ChlD subunits of the CobN-dependent cobaltochelatase complex, cobalt reductase BluB, adenosyltransferase PduO, several new proteins linked to the lower ligand assembly pathway, l-threonine kinase PduX, and a large number of other hypothetical proteins. Most missing genes detected within the cobalamin biosynthetic pathways of various bacteria were identified as nonorthologous substitutes. The variable parts of the cobalamin metabolism appear to be the cobalt transport and insertion, the CobG/CbiG- and CobF/CbiD-catalyzed reactions, and the lower ligand synthesis pathway. The most interesting result of analysis of B12 elements is that B12-independent isozymes of the methionine synthase and ribonucleotide reductase are regulated by B12 elements in bacteria that have both B12-dependent and B12-independent isozymes. Moreover, B12 regulons of various bacteria are thought to include enzymes from known B12-dependent or alternative pathways.  相似文献   

19.
Arginine hydroxamate inhibits the growth of Bacillus subtilis. From a large number of mutants isolated as resistant to this arginine analogue, 29 were chosen for further investigation. Most of these shared diminished ability to utilize arginine, citrulline and/or ornithine as sole nitrogen source. All 29 had reduced levels of the catabolic enzymes arginase and ornithine aminotransferase under various conditions in which these enzymes are induced in the parent. In some circumstances, five of the mutants also showed elevated levels of the biosynthetic enzyme ornithine carbamoyltransferase. On the basis of these data, the 29 mutants were divided into six phenotypic classes; in four of these, control of ornithine carbamoyltransferase was the same as in the wild type, while in the other two it was altered. It is suggested that the isolates carry regulatory mutations, and that certain of these may affect simultaneously the formation of arginine catabolic and biosynthetic enzymes. The implication of the latter is that in B. subtilis, as in yeast, controls of the catabolic and biosynthetic pathways are connected. Single representatives of five of the phenotypic classes carry mutations conferring arginine hydroxamate resistance linked to cysA by transduction with phage PBSI; this did not appear to be true for a representative of the sixth class.  相似文献   

20.
Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several problems. This large synthetic pathway is shared by virtually all salmonellae and must be maintained by selection, yet no conditions are known under which growth depends on endogenous B12. The cofactor is required for degradation of 1,2-propanediol and ethanolamine. However, cofactor synthesis occurs only anaerobically, and neither of these carbon sources supports anaerobic growth with any of the alternative electron acceptors tested thus far. This paradox is resolved by the electron acceptor tetrathionate, which allows Salmonella to grow anaerobically on ethanolamine or 1,2-propanediol by using endogenously synthesized B12. Tetrathionate provides the only known conditions under which simple cob mutants (unable to make B12) show a growth defect. Genes involved in this metabolism include the ttr operon, which encodes tetrathionate reductase. This operon is globally regulated by OxrA (Fnr) and induced anaerobically by a two-component system in response to tetrathionate. Salmonella reduces tetrathionate to thiosulfate, which it can further reduce to H2S, by using enzymes encoded by the genes phs and asr. The genes for 1,2-propanediol degradation (pdu) and B12 synthesis (cob), along with the genes for sulfur reduction (ttr, phs, and asr), constitute more than 1% of the Salmonella genome and are all absent from E. coli. In diverging from E. coli, Salmonella acquired some of these genes unilaterally and maintained others that are ancestral but have been lost from the E. coli lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号