首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coexistence of CRF peptide and oxytocin mRNA in the paraventricular nucleus   总被引:4,自引:0,他引:4  
S Pretel  D T Piekut 《Peptides》1990,11(3):621-624
Several studies have reported coexistences of peptides in parvocellular neurons of the paraventricular nucleus (PVN). However, the coexistence of peptides in the magnocellular PVN is less clear. Controversy exists in particular about the coexistence of corticotropin-releasing factor (CRF) and oxytocin (OX). Although these peptides are present in distinct areas of the PVN, some overlap may exist. This study investigated a potential coexistence of OX and CRF in magno- and parvocellular PVN. The data demonstrate with clarity that neurons containing both the mRNA for OX and the peptide CRF are present in subpopulations of magnocellular and parvocellular neurons of the PVN.  相似文献   

2.
Synapses between neurons with corticotropin-releasing-factor-(CRF)-like immunoreactivities and other immunonegative neurons in the hypothalamus of colchicine-treated rats, especially in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) were observed by immunocytochemistry using CRF antiserum. The immunoreactive nerve cell bodies and fibers were numerous in both the PVN and the SON. The CRF-containing neurons had synaptic contacts with immunonegative axon terminals containing a large number of clear synaptic vesicles alone or combined with a few dense-cored vesicles. We also found CRF-like immunoreactive axon terminals making synaptic contacts with other immunonegative neuronal cell bodies and fibers. And since some postsynaptic immunonegative neurons contained many large neurosecretory granules, they are considered to be magnocellular neurosecretory cells. These findings suggest that CRF functions as a neurotransmitter and/or modulator in addition to its function as a hormone.  相似文献   

3.
4.
Summary Corticotropin-releasing factor (CRF) was localized in the brains of two passerine species, the European starling (Sturnus vulgaris) and the song sparrow (Melospiza melodia), by means of immunohistochemistry. The hypothalamic distribution of this peptide in these species includes a complex of immunoreactive perikarya observed in the paraventricular nucleus (PVN), in both its medial and lateral divisions. Nerve fibers were also seen running from these areas to the anterior median eminence (AME) where a terminal field is apparent. A wide variety of extra-hypothalamic nuclei containing CRF-immunoreactive cells and fibers were identified. An apparent CRF terminal field can be visualized in the lateral septum. A dense fiber plexus is present in the nucleus accumbens (Ac) and more caudally in the nucleus of the stria terminalis (nST). In colchicinepretreated animals, it was revealed that these areas also contain CRF-stained perikarya. The pattern of CRF immunoreactivity in the Ac-nST complex is continuous, with no distinction apparent between the nuclei. The medial preoptic area (mPOA) and the adjacent diagonal band of Broca contain CRF-fibers, while cells are apparent in the mPOA. In the mesencephalon, cells were visualized in the midbrain central gray; a terminal field and scattered positively stained perikarya were found in areas more ventral to the central grey that are adjacent to the third cranial nerve. Scattered cells were also seen at the border of the nucleus intercollicularis-nucleus mesencephalicus lateralis, pars dorsalis complex. In contrast to mammalian studies, no immunoreactive nerve fibers or perikarya were observed in telencephalic areas homologous to the mammalian neocortex. These studies confirm the presence of a CRF path-way regulating pituitary function and suggest a broad role played by CRF as a neuromodulator or neurotransmitter in autonomic and possibly behavioral activities in these species.  相似文献   

5.
Corticotropin releasing factor (CRF), synthesized in neurons of the hypothalamic paraventricular nucleus (PVN), is one of the main regulators of the pituitary-adrenal cortex endocrine axis. In order to elucidate the possible involvement of the central neuropeptide-Y (NPY)- and adrenocorticotroph hormone (ACTH)-immunoreactive (IR) systems in the innervation of hypophysiotrophic CRF-synthesizing neurons, immunocytochemical double labelling studies were conducted in the hypothalamus of the rat to localize CRF-synthesizing neurons, as well as neuronal fibers exhibiting NPY and ACTH-immunoreactivity, respectively. The parvocellular subnuclei of the PVN received an intense NPY- and ACTH-IR innervation. At the light microscopic level, these peptidergic axons were associated with the dendrites and perikarya of CRF-IR neurons. Ultrastructural analysis revealed that NPY- and ACTH-IR axons established synaptic specializations with parvocellular neurons expressing CRF-immunoreactivity. These findings indicate that both neuropeptide-Y and adrenocorticotroph hormone containing neuronal systems of the brain are capable of influencing adrenal function via synaptic interactions with hypophysiotrophic CRF-synthesizing neurons. The data also support the concept that NPY and ACTH might be utilized as neuromodulators within the PVN.  相似文献   

6.
Summary Corticotropin releasing factor (CRF), synthesized in neurons of the hypothalamic paraventricular nucleus (PVN), is one of the main regulators of the pituitaryadrenal cortex endocrine axis. In order to elucidate the possible involvement of the central neuropeptide-Y (NPY)-and adrenocorticotroph hormone (ACTH)-immunoreactive (IR) systems in the innervation of hypophysiotrophic CRF-synthesizing neurons, immunocytochemical double labelling studies were conducted in the hypothalamus of the rat to localize CRF-synthesizing neurons, as well as neuronal fibers exhibiting NPY and ACTH-immunoreactivity, respectively.The parvocellular subnuclei of the PVN received an intense NPY-and ACTH-IR innervation. At the light microscopic level, these peptidergic axons were associated with the dendrites and perikarya of CRF-IR neurons. Ultrastructural analysis revealed that NPY- and ACTH-IR axons established synaptic specializations with parvocellular neurons expressing CRF-immunoreactivity. These findings indicate that both neuropeptide-Y and adrenocorticotroph hormone containing neuronal systems of the brain are capable of influencing adrenal function via synaptic interactions with hypophysiotrophic CRF-synthesizing neurons. The data also support the concept that NPY and ACTH might be ntilized as neuromodulators within the PVN.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

7.
Summary An immunocytochemical study of the magnocellular neurosecretory nuclei was performed in the snake Natrix maura and the turtle Mauremys caspica by use of antisera against: (1) a mixture of both bovine neurophysins, (2) bovine oxytocin-neurophysin, (3) arginine vasotocin, and (4) mesotocin. Arginine vasotocin- and mesotocin-immunoreactivities were localized in individual neurons of the supraoptic and paraventricular nuclei, with a distinct pattern of distribution in both species. The same cells appeared to be stained by the anti-oxytocin-neurophysin and anti-mesotocin sera. The supraoptic nucleus can be subdivided into rostral medial and caudal portions. In N. maura, but not in M. caspica, neurophysin-immunoreactive neurons were found in the retrochiasmatic nucleus. No immunoreactive elements were seen in the suprachiasmatic nucleus of both species after the use of any of the antisera. A dorsolateral aggregation of neurophysin-containing cells, localized over the lateral forebrain bundle, was present in both species. Magnocellular and parvocellular neurophysin-immunoreactive neurons were present in the paraventricular nucleus of both species. In the turtle, the paraventricular neurons were arranged into four distinct layers parallel to the ependyma; these neurons were bipolar with the major axis perpendicular to the ventricle, and many of them projected processes toward the cerebrospinal-fluid compartment. In N. maura a group of large neurons of the paraventricular nucleus was found in a very lateral position. The posterior lobe of the hypophysis and the external zone of the median eminence contained arginine vasotocin- and mesotocin-immunoreactive nerve fibers. The lamina terminalis of both species was supplied with a dense bundle of fibers containing immunoreactive neurophysin. Neurophysin-immunore-active fibers were also present in the septum, some telencephalic regions, including the cortex and the olfactory tubercule, in the paraventricular organ, and the periventricular and periaqueductal gray of the brainstem.This work was partially supported by a Grant S-85-39 from the Direccion de Investigaciones, Universidad Austral de Chile to E.M. Rodriguez  相似文献   

8.
Summary Appearance of immunoreactive corticotropin-releasing factor (CRF)-containing neurons was studied in developing hypothalamus of the rat by use of antisera against rat- and ovine CRF. These neurons were first recognized in the lateral and paraventricular nuclei on days 15.5 and 16.5 of gestation, respectively, when antiserum against rat CRF was employed. Antiserum against ovine CRF revealed the cells two days later exclusively in the latter nucleus. In both nuclei, the neurons increased in number with development. The neurons in the paraventricular nucleus appeared to project their immunoreactive processes to the median eminence via the periventricular and lateral pathways. In the median eminence, the immunoreaction with antiserum to rat CRF was first recognized in its anterior portion in the form of dots on day 16.5 of gestation but as beaded fibers in the external layer on day 17.5; these structures increased in amount with development in rostro-caudal direction. Although antiserum to ovine CRF was less potent in immunostainability than antiserum to rat CRF, it also revealed the beaded fibers in the median eminence on day 17.5 of gestation. Since evidence is available that the paraventricular nucleus is involved in corticotropin release, it is concluded that, in rats, the hypothalamic regulatory mechanism controlling the release of corticotropin initially appears on days 16.5–17.5 of gestation.  相似文献   

9.
Wang F  Tian DR  Tian N  Chen H  Shi YS  Chang JK  Yang J  Yuan L  Han JS 《Peptides》2006,27(1):165-171
Beacon is a novel peptide isolated from the hypothalamus of Israeli sand rat. In the present study, we determined the distribution of beacon in the rat brain using immunohistochemical approach with a polyclonal antiserum directed against the synthetic C-terminal peptide fragment (47-73). The hypothalamus represented the major site of beacon-immunoreactive (IR) cell bodies that were concentrated in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON). Additional immunostained cells were found in the septum, bed nucleus of the stria terminalis, subfornical organ and subcommissural organ. Beacon-IR fibers were seen with high density in the internal layer of the median eminence and low to moderate density in the external layer. Significant beacon-IR fibers were also seen in the nucleus of the solitary tract and lateral reticular formation. The beacon neurons found in the PVN were further characterized by double label immunohistochemistry. Several beacon-IR neurons that resided in the medial PVN were shown to coexpress corticotrophin-releasing hormone (CRH) and most labeled beacon fibers in the external layer of median eminence coexist with CRH. The topographical distribution of beacon-IR in the brain suggests multiple biological activities for beacon in addition to its proposed roles in modulating feeding behaviors and pituitary hormone release.  相似文献   

10.
S Kitazawa  S Shioda  Y Nakai 《Acta anatomica》1987,129(4):337-343
Catecholaminergic synaptic input to neurons containing corticotropin-releasing factor (CRF) in the parvocellular portion of the paraventricular nucleus (PVN) in the rat hypothalamus was observed. The experimental techniques used combine autoradiography after 3H-noradrenaline (3H-NA) injection or uptake of 5-hydroxydopamine (5-OHDA) with immunocytochemistry using CRF antiserum. CRF-like immunoreactive cell bodies and fibers in the PVN received synaptic inputs from the axon terminals in which a selective accumulation of 3H-NA or 5-OHDA was found. This finding suggests that the secretion of CRF neurons may be regulated via synapses by catecholaminergic neurons.  相似文献   

11.
The interrelationships of corticotropin-releasing factor (CRF) immunoreactive neuronal cell bodies and processes have been examined in the paraventricular nucleus (PVN) of adrenalectomized-dexamethasone treated rats. Antisera generated against ovine CRF (oCRF) were used in the peroxidase-anti-peroxidase-complex (PAP)-immunocytochemical method at both the light and electron microscopic levels. In this experimental model, a great number of CRF-immunoreactive neurons were detected in the parvocellular subdivisions of the PVN and a few scattered labelled parvocellular neurons were also observed within the magnocellular subunits. Characteristic features of immunolabeled perikarya included hypertrophied rough endoplasmic reticulum with dilated endoplasmic cisternae, well developed Golgi complexes and increased numbers of neurosecretory granules. These features are interpreted to indicate accelerated hormone synthesis as a result of adrenalectomy. Afferent fibers communicated with dendrites and somata of CRF-immunoreactive neurons via both symmetrical and asymmetrical synapses. Some neurons exhibited somatic appendages and these structures were also observed to receive synaptic terminals. Within both the PVN and its adjacent neuropil, CRF-immunoreactive axons demonstrated varicosites which contained accumulations of densecore vesicles. CRF-containing axons were observed to branch into axon collaterals. These axons or axon collaterals established axo-somatic synapses on CRF-producing neurons in the parvocellular regions of the PVN, while in the magnocellular area of the nucleus they were found in juxtaposition with unlabeled magnocellular neuronal cell bodies or in synaptic contact with their dendrites. The presence of CRF-immunoreactive material in presynaptic structures suggests that the neurohormone may participate in mechanisms of synaptic transfer. These ultrastructural data indicate that the function of the paraventricular CRF-synthesizing neurons is adrenal steroid hormone dependent. They also provide morphological evidence for the existence of a neuronal ultrashort feed-back mechanism within the PVN for the regulation of CRF production and possibly that of other peptide hormones contained within this complex.  相似文献   

12.
Summary The interrelationships of corticotropin-releasing factor (CRF) immunoreactive neuronal cell bodies and processes have been examined in the paraventricular nucleus (PVN) of adrenalectomized-dexamethesone treated rats. Antisera generated against ovine CRF (oCRF) were used in the peroxidase-anti-peroxidase-complex (PAP)-immunocytochemical method at both the light and electron microscopic levels. In this experimental model, a great number of CRF-immunoreactive neurons were detected in the parvocellular subdivisions of the PVN and a few scattered labelled parvocellular neurons were also observed within the magnocellular subunits. Characteristic features of immunolabeled perikarya included hypertrophied rough endoplasmic reticulum with dilated endoplasmic cisternae, well developed Golgi complexes and increased numbers of neurosecretory granules. These features are interpreted to indicate accelerated hormone synthesis as a result of adrenalectomy. Afferent fibers communicated with dendrites and somata of CRF-immunoreactive neurons via both symmetrical and asymmetrical synapses. Some neurons exhibited somatic appendages and these structures were also observed to receive synaptic terminals. Within both the PVN and its adjacent neuropil, CRF-immunoreactive axons demonstrated varicosites which contained accumulations of densecore vesicles. CRF-containing axons were observed to branch into axon collaterals. These axons or axon collaterals established axo-somatic synapses on CRF-producing neurons in the parvocellular regions of the PVN, while in the magnocellular area of the nucleus they were found in juxtaposition with unlabeled magnocellular neuronal cell bodies or in synaptic contact with their dendrites. The presence of CRF-immunoreactive material in presynaptic structures suggests that the neurohormone may participate in mechanisms of synaptic transfer.These ultrastructural data indicate that the function of the paraventricular CRF-synthesizing neurons is adrenal steroid hormone dependent. They also provide morphological evidence for the existence of a neuronal ultrashort feedback mechanism within the PVN for the regulation of CRF production and possibly that of other peptide hormones contained within this complex.Supported by NIH grant NS 19266 to WKP  相似文献   

13.
Summary In the hypothalamus of the turtle, Lissemys punctata granosa, two magnocellular and 23 parvocellular neuronal complexes can be distinguished. The magnocellular complexes include the nucleus supraopticus and the nucleus paraventricularis; paraventricular neurons are partly arranged in rows parallel to the third ventricle. Most infundibular parvocellular nuclei display neurons disposed in rows parallel to the ventricular surface. In the preoptic region, the prominent parvocellular neuronal complexes encompass the nucleus periventricularis anterior, lateral preoptic area, the nucleus of the anterior commissure and the nucleus suprachiasmaticus. The prominent nucleus periventricularis posterior extends caudad and shows neurons arranged in vertical rows parallel to the third ventricle. Other parvocellular nuclei of the rostral hypothalamus are composed of clustered subunits. The nucleus arcuatus is a fairly large nuclear entity extending from the level marked dorsally by the nucleus paraventricularis to the area occupied by the nucleus of the paraventricular organ. A well-developed ventromedial nucleus is located ventrolateral to the paraventricular organ. The prominent paraventricular organ consists of tightly arranged neurons, some of which possess apical projections into the third ventricle; it is surrounded by the nucleus of the paraventricular organ. Nucleus hypothalamicus medialis et lateralis, nucleus hypothalamicus posterior and the nuclei recessus infundibuli are further nuclear units of the tuberal region. The caudal end of the hypothalamus is marked by the nucleus mamillaris; its neurons are scattered among the fibers of the retroinfundibular commissure. The median eminence is well developed and shows a large medial and two lateral protrusions into the infundibular recess.  相似文献   

14.
Summary The presence and distribution of CRF-immunoreactive cells and nerve fibers were studied in the mammillary body of the rat, 12 days after placing various types of lesions within the hypothalamus. Anterior and anteriolateral cuts, placed in the midhypothalamus immediately behind the paraventricular nuclei resulted in an almost complete disappearance of CRF-immunoreactive fibers from the median eminence and simultaneous appearance of CRF-containing neurons in the mammillary body. Posterior or postero-lateral hypothalamic cuts carried out in front of the mammillary body caused the accumulation of CRF-immunoreactive material in neurons and neural processes located behind the cut-line. This type of intervention had no effect on the quantity of CRF fibers in the median eminence. A cut running through the central part of the mammillary body in the frontal plane resulted in appearance of CRF neurons only in the posterior half of the mammillary region. Placing a cut behind and over the mammillary body, CRF-immunoreactive neurons became detectable below the superior cut-line. No immunoreactive neurons were observed in the mammillary body when the frontal cut reached the base of the brain at the posterior border of the nucleus, leaving intact its anterior and superior connections. In all these cases when the mammillo-thalamic tract was transected, CRF neurons became detectable in the mammillary body.  相似文献   

15.
16.
Dual staining immunocytochemical procedures were used to elucidate the distribution and potential anatomic relationship of corticotropin releasing factor (CRF)-containing cell bodies and central opiocortin fibers in the paraventricular nucleus (PVN) of rat hypothalamus. Double-immunostained preparations employed antibodies and the peroxidase-antiperoxidase (PAP) technique as a first sequence in the immunostaining protocol, followed by antibodies and glucose oxidase-conjugated avidin as the second sequence, yielding rich brown and vibrant blue reaction products respectively. Distinctive features of this new dual immunostaining technique and its applicability to the study of co-localization and coexistence of neuropeptides are discussed. This study demonstrates immunostained ACTH1-39 fibers in intimate anatomic proximity to, and often surrounding in remarkable density, CRF-containing cells localized in distinct subnuclei of the PVN. It appears that the central opiocortin system selectively innervates CRF neurons in the PVN.  相似文献   

17.
Summary The afferent connections of the paraventricular nucleus (PVN) of the domestic mallard (Pekin duck), Anas platyrhynchos, were demonstrated by means of microiontophoretic injection of horseradish peroxidase (HRP). To place the HRP injection exactly into the PVN, its location was identified prior to the injection by observing antidiuretic reactions to electrostimulations within the rostral hypothalamus of conscious, hydrated animals. Antidiuresis was induced only when electrostimulation was applied to a distinct hypothalamic area. Two different patterns of antidiuresis were observed: (i) an immediate reduction in rate of production of urine, and (ii) antidiuresis preceded by a period of increase in production of urine. Repeated stimulation of the same site with the same parameters resulted in decreasing antidiuretic effects. At the site where stimulation had elicited the most pronounced antidiuresis of either response type, HRP was injected microiontophoretically.Histological examination after 3–8 days of survival revealed delicate injection sites located exclusively in the periventricular portion of the PVN. Adjacent to the dorsal portion of the PVN retrogradely labeled tanycytes and intraependymal neurons were scattered in the ventricular wall. As demonstrated in neurohistological and electron-microscopic investigations, this ependymal region exhibits a particular arrangement of tanycytes and small neurons (10–15 m in diameter), some of which belong to the neurosecretory type.Additional HRP-labeled neuronal perikarya afferent to the PVN were demonstrated in the contralateral PVN, and on the ipsilateral side in the lateral septum, lateral hypothalamic area and locus coeruleus. Within the nuclei of the solitary tract, stained nerve cells were found ipsilateral as well as contralateral to the injection site.Several of the neurons demonstrated may be considered as candidates for the transmission of signals originating from various receptive structures relevant for the control of avian salt- and water-balance. The physiological results conform to the concept that neurons of the PVN influence urine formation by controlling the release of arginine-vasotocin (AVT). Evidence that suggests additional modes of control exerted by these neurons in salt- and water-balance is presented.Supported by grants from the Deutsche Forschungsgemeinschaft (Ko 758/1; Si 230/4-4)Portions of these results were presented on the occasion of the 54th Meeting of the Deutsche Physiologische Gesellschaft (Korf et al. 1981 a) and the 76th Meeting of the Anatomische Gesellschaft (Korf et al. 1981 b)  相似文献   

18.
The distribution of corticotropin-releasing factor (CRF)-like immunoreactivity and its colocalization with neuropeptide Y (NPY)-like substances were investigated in the optic lobe and peduncle complex of the octopus (Octopus vulgaris) using immunohistochemical techniques. In the optic lobe cortex, CRF-immunoreactive (CRF-IR) and NPY-immunonegative varicose fibers were observed in the plexiform layer. In the medulla, CRF-IR somata were seen in the cell islands, and CRF-IR varicose fibers were observed in the neuropil. About half of the CRF-IR structures in the medulla showed NPY-like immunoreactivity. In the peduncle lobe, no CRF-IR somata but abundant CRF-IR varicose fibers were observed, and about half of them showed NPY-like immunoreactivity. In the olfactory lobe, CRF-IR somata and abundant CRF-IR varicose fibers were observed. Almost all the CRF-IR somata located in the posterior olfactory lobule showed NPY-like immunoreactivity, whereas those seen in the median olfactory lobule were immunonegative for NPY. About half of the CRF-IR fibers in the anterior lobule neuropil were immunopositive for NPY, but those in the median and posterior lobule neuropils were immunonegative for NPY. In the optic gland, almost all the CRF-IR varicose fibers were immunoreactive for NPY. Western blot analysis of the optic lobe and peduncle complex indicated that anti-CRF antiserum labeled approximate 16.4- and 14.6-kDa bands and that anti-NPY antiserum labeled an approximate 16.2-kDa band. CRF-IR and NPY-immunoreactive neurons in the optic lobe may participate in the modulation of visual information and those in the optic gland may be involved in the regulation of endocrine function.  相似文献   

19.
刺激室旁核及加压素对大鼠胃缺血-再灌注损伤的保护作用   总被引:11,自引:1,他引:10  
Zhang JF  Zhang YM  Yan CD  Zhou XP  Qi YJ 《生理学报》2002,54(2):133-138
采用夹闭大鼠腹腔动脉30min,松开动脉夹血流复灌1h的胃缺血-再灌注损伤(gastric ischemia-reper-fusion injury,GI-RI)模型,观察了电或化学刺激室旁核(paraventricular nucleus,PVN)及外源性加压素(arginine-va-sopression,AVP)对GI-RI的影响,并对PVN的调控通路进行了初步分析。结果表明:电或化学刺激PVN后,GI-RI显著减轻;损毁双侧孤束核(nucleus tractus solitarius,NTS)或一侧NTS内注射AVP-V1受体阻断剂,均能取消电刺激PVN对GI-RI的效应;去除脑垂体后不影响PVN的作用;切断膈下迷走神经或切除腹腔交感神经节,则能加强电刺激PVN对GI-RI的影响;PVN内注射不同剂量的AVP同样能减轻大鼠GI-RI损伤。结果提示:PVN及AVP对大鼠GI-RI具有保护作用;PVN的这种作用可能是因电或化学刺激后,激活了其中的加压素能神经元,经其下行投射纤维释放AVP作用于NTS神经元的VAP-V1受体,并通过迷走和交感神经介导,从而影响GI-RI;而似与PVN-垂体通路关系不大。  相似文献   

20.
Aims of the present study were to describe the distribution of corticotropin releasing factor (CRF) immunoreactivity in rat small and large intestines, to quantify the percentage of CRF-immunoreactive (CRF-IR) enteric neurons, to reveal possible CRF immunoreactivity in cultured myenteric neurons from rat ileum and to examine if additions of CRF, urocortin 1 (Ucn1), CRF antagonist or vasoactive intestinal peptide (VIP) affect neuronal survival in vitro. Co-localization of CRF- and VIP-immunoreactivity was examined, as well as a possible interplay between CRF and VIP in neuroprotection. Further we wanted to elucidate if mast cells affect neuronal survival via CRF signaling.Networks of CRF-containing nerve cell bodies and fibers were detected in rat intestine. CRF-IR neurons contained to a high degree also VIP. A low number of cultured myenteric neurons was CRF-IR. CRF, Ucn1 or CRF-antagonist did not promote neuronal survival of cultured myenteric neurons, while VIP significantly enhanced neuronal survival. Simultaneous presence of CRF attenuated the VIP mediated increase in neuronal survival. Co-culturing neurons and mast cells resulted in a marked reduction in neuronal survival, not executed via CRF signaling pathways. Conclusion: CRF is present in enteric neurons and counteracts the neuroprotective effect of VIP in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号