首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have mapped the domains of lipid-free apoA-I that promote cAMP-dependent and cAMP-independent cholesterol and phospholipid efflux. The cAMP-dependent lipid efflux in J774 mouse macrophages was decreased by approximately 80-92% by apoA-I[delta(185-243)], only by 15% by apoA-I[delta(1-41)] or apoA-I[delta(1-59)], and was restored to 75-80% of the wild-type apoA-I control value by double deletion mutants apoA-I[delta(1-41)delta(185-243)] and apoA-I[delta(1-59)delta(185-243)]. Similar results were obtained in HEK293 cells transfected with an ATP-binding cassette transporter A1 (ABCA1) expression plasmid. The double deletion mutant of apoA-I had reduced thermal and chemical stability compared with wild-type apoA-I. Sequential carboxyl-terminal deletions showed that cAMP-dependent cholesterol efflux was diminished in all the mutants tested, except the apoA-I[delta(232-243)] which had normal cholesterol efflux. In cAMP-untreated or in mock-transfected cells, cholesterol efflux was not affected by the amino-terminal deletions, but decreased by 30-40% and 50-65% by the carboxyl-terminal and double deletions, respectively. After adenovirus-mediated gene transfer in apoA-I-deficient mice, wild-type apoA-I and apoA-I[delta(1-41)] formed spherical high density lipoprotein (HDL) particles, whereas apoA-I[delta(1-41)delta(185-243)] formed discoidal HDL. The findings suggest that although the central helices of apoA-I alone can promote ABCA1-mediated lipid efflux, residues 220-231 are necessary to allow functional interactions between the full-length apoA-I and ABCA1 that are required for lipid efflux and HDL biogenesis.  相似文献   

2.
Chroni A  Koukos G  Duka A  Zannis VI 《Biochemistry》2007,46(19):5697-5708
ATP-binding cassette transporter A-1 (ABCA1)-mediated lipid efflux to lipid-poor apolipoprotein A-I (apoA-I) results in the gradual lipidation of apoA-I. This leads to the formation of discoidal high-density lipoproteins (HDL), which are subsequently converted to spherical HDL by the action of lecithin:cholesterol acyltransferase (LCAT). We have investigated the effect of point mutations and deletions in the carboxy-terminal region of apoA-I on the biogenesis of HDL using adenovirus-mediated gene transfer in apoA-I-deficient mice. It was found that the plasma HDL levels were greatly reduced in mice expressing the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)], shown previously to diminish the ABCA1-mediated lipid efflux. The HDL levels were normal in mice expressing the WT apoA-I, the apoA-I[Delta(232-243)] deletion mutant, or the apoA-I[E191A/H193A/K195A] point mutant, which promote normal ABCA1-mediated lipid efflux. Electron microscopy and two-dimensional gel electrophoresis showed that the apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] mutants formed mainly prebeta-HDL particles and few spherical particles enriched in apoE, while WT apoA-I, apoA-I[Delta(232-243)], and apoA-I[E191A/H193A/K195A] formed spherical alpha-HDL particles. The findings establish that (a) deletions that eliminate the 220-231 region of apoA-I prevent the synthesis of alpha-HDL but allow the synthesis of prebeta-HDL particles in vivo, (b) the amino-terminal segment 1-184 of apoA-I can promote synthesis of prebeta-HDL-type particles in an ABCA1-independent process, and (c) the charged residues in the 191-195 region of apoA-I do not influence the biogenesis of HDL.  相似文献   

3.
To explore the functional interactions between apoA-I and ABCA1, we correlated the cross-linking properties of several apoA-I mutants with their ability to promote cholesterol efflux. In a competitive cross-linking assay, amino-terminal deletion and double amino- and carboxy-terminal deletion mutants of apoA-I competed effectively the cross-linking of WT (125)I-apoA-I to ABCA1, while the carboxy-terminal deletion mutant apoA-I[Delta(220-243)] competed poorly. Direct cross-linking of WT apoA-I, amino-terminal, and double deletion mutants of apoA-I to ABCA1 showed similar apparent K(d) values (49-74 nM), whereas the apparent K(d) values of the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] were increased 3-fold. Analysis of several internal deletions and point mutants of apoA-I showed that apoA-I[Delta(61-78)], apoA-I[Delta(89-99)], apoA-I[Delta(136-143)], apoA-I[Delta(144-165)], apoA-I[D102A/D103A], apoA-I[E125K/E128K/K133E/E139K], apoA-I[L141R], apoA-I[R160V/H162A], and WT apoA-I had similar ABCA1-mediated lipid efflux, and all competed efficiently the cross-linking of WT (125)I-apoA-I to ABCA1. WT apoA-I and ABCA1 could be cross-linked with a 3 A cross-linker. The WT apoA-I, amino, carboxy and double deletion mutants of apoA-I showed differences in the cross-linking to WT ABCA1 and the mutant ABCA1[W590S]. The findings are consistent with a direct association of different combinations of apoA-I helices with a complementary ABCA1 domain. Mutations that alter ABCA1/apoA-I association affect cholesterol efflux and inhibit biogenesis of HDL.  相似文献   

4.
Several hereditary point mutations in human apolipoprotein A-I (apoA-I) have been associated with low HDL-cholesterol levels and/or increased coronary artery disease (CAD) risk. However, one apoA-I mutation, the V19L, recently identified in Icelanders, has been associated with increased HDL-cholesterol levels and decreased CAD risk. In an effort to gain mechanistic insight linking the presence of this mutation in apoA-I with the increase of HDL-cholesterol levels we evaluated the effect of V19L mutation on the conformational integrity and functional properties of apoA-I in lipid-free and lipidated form. ApoA-I[V19L] was found to be thermodynamically destabilized in lipid-free form and displays an increased capacity to associate with phospholipids compared to WT apoA-I. When associated to reconstituted HDL (rHDL), apoA-I[V19L] was more thermodynamically stabilized than WT apoA-I. ApoA-I[V19L] displayed normal capacity to promote ABCA1-mediated cholesterol efflux and to activate the enzyme LCAT, in lipid-free and rHDL-associated forms, respectively. Additionally, rHDL-associated apoA-I[V19L] showed normal capacity to promote ABCG1-mediated cholesterol efflux, but 45% increased capacity to promote SR-BI-mediated cholesterol efflux, while the SR-BI-mediated HDL-lipid uptake was normal. Overall, our findings show that the apoA-I V19L mutation does not affect the first steps of HDL biogenesis pathway. However, the increased capacity of apoA-I[V19L] to associate with phospholipids, in combination with the enhanced thermodynamic stability of lipoprotein-associated apoA-I[V19L] and increased capacity of apoA-I[V19L]-containing lipoprotein particles to accept additional cholesterol by SR-BI could account for the increased HDL-cholesterol levels observed in human carriers of the mutation.  相似文献   

5.
PURPOSE OF THE REVIEW: This review clarifies the functions of key proteins of the chylomicron and the HDL pathways. RECENT FINDINGS: Adenovirus-mediated gene transfer of several apolipoprotein (apo)E forms in mice showed that the amino-terminal 1-185 domain of apoE can direct receptor-mediated lipoprotein clearance in vivo. Clearance is mediated mainly by the LDL receptor. The carboxyl-terminal 261-299 domain of apoE induces hypertriglyceridemia, because of increased VLDL secretion, diminished lipolysis and inefficient VLDL clearance. Truncated apoE forms, including apoE2-202, have a dominant effect in remnant clearance and may have future therapeutic applications for the correction of remnant removal disorders. Permanent expression of apoE and apoA-I following adenoviral gene transfer protected mice from atherosclerosis. Functional assays, protein cross-linking, and adenovirus-mediated gene transfer of apoA-I mutants in apoA-I deficient mice showed that residues 220-231, as well as the central helices of apoA-I, participate in ATP-binding cassette transporter A1-mediated lipid efflux and HDL biogenesis. Following apoA-I gene transfer, an amino-terminal deletion mutant formed spherical alpha-HDL, a double amino- and carboxyl-terminal deletion mutant formed discoidal HDL, and a carboxyl-terminal deletion mutant formed only pre-beta-HDL. The findings support a model of cholesterol efflux that requires direct physical interactions between apoA-I and ATP-binding cassette transporter A1, and can explain Tangier disease and other HDL deficiencies. SUMMARY: New insights are provided into the role of apoE in cholesterol and triglyceride homeostasis, and of apoA-I in the biogenesis of HDL. Clearance of the lipoprotein remnants and increase in HDL synthesis are obvious targets for therapeutic interventions.  相似文献   

6.
The ATP-binding cassette transporters ABCA1 and ABCG1 as well as scavenger receptor BI (SR-BI) mediate the efflux of lipids from macrophages to apolipoprotein A-I (apoA-I) and high density lipoproteins (HDL). We used RNA interference in RAW264.7 macrophages to study the interactions of ABCA1, ABCG1, and SR-BI with lipid-free apoA-I, native and reconstituted HDL with apoA-I:phosphatidylcholine ratios of either 1:40 (rHDL(1:40)) or 1:100 (rHDL(1:100)). Knock-down of ABCA1 inhibits the cellular binding at 4 degrees C of lipid-free apoA-I but not of HDL whereas suppression of ABCG1 or SR-BI reduces the binding of HDL but not lipid-free apoA-I. The degree of lipidation influences the interactions of rHDL with ABCG1 and SR-BI. Knock-down of ABCG1 inhibits more effectively the binding and cholesterol efflux capacities of lipid-poorer rHDL(1:40) whereas knock-down of SR-BI has a more profound effect on the binding and cholesterol efflux capacities of lipid-richer rHDL(1:100). Moreover, knock-down of ABCG1 but not SR-BI interferes with the association of lipid-free apoA-I during prolonged incubation at 37 degrees C. Finally, knock-down of ABCG1 inhibits the binding of initially lipid-free apoA-I which has been preconditioned by cells with high ABCA1 activity. The gained ability of initially lipid-free apoA-I to interact with ABCG1 is accompanied by its shift from electrophoretic pre-beta- to alpha-mobility. Taken together, these data suggest that the interaction of lipid-free apoA-I with ABCA1 generates a particle that immediately interacts with ABCG1 but not with SR-BI. Furthermore, the degree of lipidation influences the interaction of HDL with ABCG1 or SR-BI.  相似文献   

7.
apoA-I plays important structural and functional roles in reverse cholesterol transport. We have described the molecular structure of the N-terminal domain, Δ(185-243) by X-ray crystallography. To understand the role of the C-terminal domain, constructs with sequential elongation of Δ(185-243), by increments of 11-residue sequence repeats were studied and compared with Δ(185-243) and WT apoA-I. Constructs up to residue 230 showed progressively decreased percent α-helix with similar numbers of helical residues, similar detergent and lipid binding affinity, and exposed hydrophobic surface. These observations suggest that the C-terminal domain is unstructured with the exception of the last 11-residue repeat (H10B). Similar monomer-dimer equilibrium suggests that the H10B region is responsible for nonspecific aggregation. Cholesterol efflux progressively increased with elongation up to ∼60% of full-length apoA-I in the absence of the H10B. In summary, the sequential repeats in the C-terminal domain are probably unstructured with the exception of H10B. This segment appears to be responsible for initiation of lipid binding and aggregation, as well as cholesterol efflux, and thus plays a vital role during HDL formation. Based on these observations and the Δ(185-243) crystal structure, we propose a lipid-free apoA-I structural model in solution and update the mechanism of HDL biogenesis.  相似文献   

8.
Mechanisms to increase plasma high-density lipoprotein (HDL) or to promote egress of cholesterol from cholesterol-loaded cells (e.g., foam cells from atherosclerotic lesions) remain an important target to regress heart disease. Reconstituted HDL (rHDL) serves as a valuable vehicle to promote cellular cholesterol efflux in vitro and in vivo. rHDL were prepared with wild type apolipoprotein (apo) A-I and the rare variant, apoA-I Milano (M), and each apolipoprotein was reconstituted with phosphatidylcholine (PC) or sphingomyelin (SM). The four distinct rHDL generated were incubated with CHO cells, J774 macrophages, and BHK cells in cellular cholesterol efflux assays. In each cell type, apoA-I(M) SM-rHDL promoted the greatest cholesterol efflux. In BHK cells, the cholesterol efflux capacities of all four distinct rHDL were greatly enhanced by increased expression of ABCG1. Efflux to PC-containing rHDL was stimulated by transfection of a nonfunctional ABCA1 mutant (W590S), suggesting that binding to ABCA1 represents a competing interaction. This interpretation was confirmed by binding experiments. The data show that cholesterol efflux activity is dependent upon the apoA-I protein employed, as well as the phospholipid constituent of the rHDL. Future studies designed to optimize the efflux capacity of therapeutic rHDL may improve the value of this emerging intervention strategy.  相似文献   

9.
Chroni A  Kan HY  Shkodrani A  Liu T  Zannis VI 《Biochemistry》2005,44(10):4108-4117
The objective of this study was to determine the effect of two amino-terminal apolipoprotein A-I (apoA-I) deletions on high-density lipoprotein (HDL) biosynthesis and lipid homeostasis. Adenovirus-mediated gene transfer showed that the apoA-I[Delta(89-99)] deletion mutant caused hypercholesterolemia, characterized by increased plasma cholesterol and phospholipids, that were distributed in the very low density/intermediate density/low-density lipoprotein (VLDL/IDL/LDL) region, and normal triglycerides. The capacity of the mutant protein to promote ATP-binding cassette transporter A1- (ABCA1-) mediated cholesterol efflux and to activate lecithin:cholesterol acyltranserase (LCAT) was approximately 70-80% of the wild-type (WT) control. The phospholipid transfer protein (PLTP) activity of plasma containing the apoA-I[Delta(89-99)] mutant was decreased to 32% of the WT control. Similar analysis showed that the apoA-I[Delta(62-78)] deletion mutant in apoA-I-deficient mice caused combined hyperlipidemia characterized by increased triglycerides, cholesterol, and phospholipids in the VLDL/IDL region. There was enrichment of the VLDL/IDL with mutant apoA-I that resulted in reduction of in vitro lipolysis. The capacity of this mutant to promote ABCA1-mediated cholesterol efflux was normal, and the capacity to activate LCAT in vitro was reduced by 53%. The WT apoA-I and the apoA-I[Delta(62-78)] mutant formed spherical HDL particles, whereas the apoA-I[Delta(89-99)] mutant formed discoidal HDL particles. We conclude that alterations in apoA-I not only may have adverse effects on HDL biosynthesis but also may promote dyslipidemia due to interference of the apoA-I mutants on the overall cholesterol and triglycerides homeostasis.  相似文献   

10.
Apolipoprotein A-I (apoA-I) Nichinan, a naturally occurring variant with ΔE235 in the C terminus, is associated with low plasma HDL levels. Here, we investigated the tertiary structure, lipid-binding properties, and ability to induce cellular cholesterol efflux of apoA-I Nichinan and its C-terminal peptide. Thermal and chemical denaturation experiments demonstrated that the ΔE235 mutation decreased the protein stability compared with wild type (WT). ApoA-I Nichinan exhibited capabilities to bind to or solubilize lipid vesicles that are intermediate to that of WT and a L230P/L233P/Y236P variant in which the C-terminal α-helix folding is completely disrupted and forms relatively larger and unstable discoidal complexes, indicating that perturbation of the C-terminal α-helical structure by the ΔE235 mutation leads to reduced lipid binding. Supporting this, apoA-I 209-241/ΔE235 peptide showed significantly decreased ability to form α-helix both in the lipid-free and lipid-bound states, and reduced efficiency to solubilize vesicles. In addition, both apoA-I Nichinan and its C-terminal peptide exhibited reduced activity in ABCA1-mediated cellular cholesterol efflux. Thus, the disruption of the ability of the C-terminal region to form α-helix caused by the E235 deletion appears to be the important determinant of impaired lipid binding and cholesterol efflux ability and, consequently, the low plasma HDL levels of apoA-I Nichinan probands.  相似文献   

11.
The contribution of the amphipathic alpha-helices of apoA-I toward lipid efflux from human skin fibroblasts and macrophage was examined. Four apoA-I mutants were designed, each by deletion of a pair of predicted adjacent helices. Three mutants lacked two consecutive central alpha-helices [Delta(100-143), Delta(122-165), and Delta(144-186)], whereas the final mutant lacked the C-terminal domain [Delta(187-243)]. When compared to recombinant wild-type apoA-I and mutants with central domain deletions, Delta(187-243) exhibited a marked reduction in its ability to promote either cholesterol or phospholipid efflux from THP-1 macrophages. This mutant also demonstrated a decreased ability to bind lipids and to form lipoprotein complexes. In contrast, the four mutants and apoA-I equally supported cholesterol efflux from fibroblasts, albeit with a reduced capacity when compared to macrophages. Delta(187-243) bound poorly to the macrophage cell surface when compared to apoA-I, and competitive binding studies with the central domain and C-terminal deletions mutants showed that only Delta(187-243) did not compete effectively with [(125)I]apoA-I. Omission of PMA during cholesterol loading enhanced cholesterol efflux to both apoA-I (1.5-fold) and the C-terminal deletion mutant (2.5-fold). Inclusion of the Sandoz ACAT inhibitor (58-035) during loading and, in the absence of PMA, increased and equalized cholesterol efflux to apoA-I and Delta(187-243). Surprisingly, omission of PMA during cholesterol loading had minimal effects on the binding of apoA-I or Delta(187-243) to the THP-1 cell surface. Overall, these results show that cholesterol efflux from cells such as fibroblasts does not require any specific sequence between residues 100 and 243 of apoA-I. In contrast, optimal cholesterol efflux in macrophages requires binding of the C-terminal domain of apoA-I to a cell surface-binding site and the subsequent translocation of intracellular cholesterol to an efflux-competent pool.  相似文献   

12.
Hypertriglyceridemia is a common pathological condition in humans of mostly unknown etiology. Here we report induction of dyslipidemia characterized by severe hypertriglyceridemia as a result of point mutations in human apolipoprotein A-I (apoA-I). Adenovirus-mediated gene transfer in apoA-I-deficient (apoA-I(-)(/)(-)) mice showed that mice expressing an apoA-I[E110A/E111A] mutant had comparable hepatic mRNA levels with WT controls but greatly increased plasma triglyceride and elevated plasma cholesterol levels. In addition, they had decreased apoE and apoCII levels and increased apoB48 levels in very low-density lipoprotein (VLDL)/intermediate-density lipoprotein (IDL). Fast protein liquid chromatography (FPLC) analysis of plasma showed that most of cholesterol and approximately 15% of the mutant apoA-I were distributed in the VLDL and IDL regions and all the triglycerides in the VLDL region. Hypertriglyceridemia was corrected by coinfection of mice with recombinant adenoviruses expressing the mutant apoA-I and human lipoprotein lipase. Physicochemical studies indicated that the apoA-I mutation decreased the alpha-helical content, the stability, and the unfolding cooperativity of both lipid-free and lipid-bound apoA-I. In vitro functional analyses showed that reconstituted HDL (rHDL) particles containing the mutant apoA-I had 53% of scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux capacity and 37% capacity to activate lecithin:cholesterol acyltransferase (LCAT) as compared to the WT control. The mutant lipid-free apoA-I had normal capacity to promote ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol efflux. The findings indicate that subtle structural alterations in apoA-I may alter the stability and functions of apoA-I and high-density lipoprotein (HDL) and may cause hypertriglyceridemia.  相似文献   

13.
We have studied the effects of mutations in apoA-I on reconstituted high density lipoprotein (HDL) particle (rHDL(apoA-I)) binding to and cholesterol efflux from wild-type (WT) and mutant forms of the HDL receptor SR-BI expressed by ldlA-7 cells. Mutations in helix 4 or helix 6 of the apoA-I reduced efflux by 79 and 51%, respectively, without substantially altering receptor binding (apparent K(d) values of 1.1-4.4 microg of protein/ml). SR-BI with an M158R mutation bound poorly to rHDL with WT and helix 4 mutant apoA-I; the helix 6 mutant restored tight binding to SR-BI(M158R) (K(d) values of 48, 60, and 7 microg of protein/ml, respectively). SR-BI(M158R)-mediated cholesterol efflux rates, normalized for binding, were high for all three rHDLs (71-111% of control). In contrast, absolute (12-19%) and binding-corrected (24-47%) efflux rates for all three rHDLs mediated by SR-BI with Q402R/Q418R mutations were very low. We propose that formation of a productive complex between apoA-I in rHDL and SR-BI, in which the lipoprotein and the receptor must either be precisely aligned or have the capacity to undergo appropriate conformational changes, is required for efficient SR-BI-mediated cholesterol efflux. Some mutations in apoA-I and/or SR-BI can result in high affinity, but non-productive, binding that does not permit efficient cholesterol efflux.  相似文献   

14.
ATP-binding cassette transporter G1 (ABCG1) plays an important role in macrophage reverse cholesterol transport in vivo by promoting cholesterol efflux onto lipidated apoA-I. However, the underlying mechanism is unclear. Here, we found that ABCG1 co-immunoprecipitated with caveolin-1 (CAV1) but not with flotillin-1 and -2. Knockdown of CAV1 expression using siRNAs significantly reduced ABCG1-mediated cholesterol efflux without detectable effect on ABCA1-mediated cholesterol efflux. Disruption of the putative CAV1 binding site in ABCG1, through replacement of tyrosine residues at positions 487 and 489 or at positions 494 and 495 with alanine (Y487AY489A and Y494AY495A), impaired the interaction of ABCG1 with CAV1 and significantly decreased ABCG1-mediated cholesterol efflux. The substitution of Tyr494 and Tyr495 with Phe or Trp that resulted in an intact CAV1 binding site had no effect. Furthermore, Y494AY495A affected trafficking of ABCG1 to the cell surface. The mutant protein is mainly located intracellularly. Finally, we found that CAV1 co-immunoprecipitated with ABCG1 and regulated cholesterol efflux to reconstituted HDL in THP-1-derived macrophages upon the liver X receptor agonist treatment. These findings indicate that CAV1 interacts with ABCG1 and regulates ABCG1-mediated cholesterol efflux.  相似文献   

15.
AimsHigh-density lipoprotein (HDL) contains multiple components that endow it with biological activities. Apolipoprotein A-I (apoA-I) and surface phospholipids contribute to these activities; however, structure-function relationships in HDL particles remain incompletely characterised.MethodsReconstituted HDLs (rHDLs) were prepared from apoA-I and soy phosphatidylcholine (PC) at molar ratios of 1:50, 1:100 and 1:150. Oxidative status of apoA-I was varied using controlled oxidation of Met112 residue. HDL-mediated inactivation of PC hydroperoxides (PCOOH) derived from mildly pre-oxidized low-density lipoprotein (LDL) was evaluated by HPLC with chemiluminescent detection in HDL + LDL mixtures and re-isolated LDL. Cellular cholesterol efflux was characterised in RAW264.7 macrophages.ResultsrHDL inactivated LDL-derived PCOOH in a dose- and time-dependent manner. The capacity of rHDL to both inactivate PCOOH and efflux cholesterol via ATP-binding cassette transporter A1 (ABCA1) increased with increasing apoA-I/PC ratio proportionally to the apoA-I content in rHDL. Controlled oxidation of apoA-I Met112 gradually decreased PCOOH-inactivating capacity of rHDL but increased ABCA1-mediated cellular cholesterol efflux.ConclusionsIncreasing apoA-I content in rHDL enhanced its antioxidative activity towards oxidized LDL and cholesterol efflux capacity via ABCA1, whereas oxidation of apoA-I Met112 decreased the antioxidative activity but increased the cholesterol efflux. These findings provide important considerations in the design of future HDL therapeutics.Non-standard abbreviations and acronyms: AAPH, 2,2′-azobis(-amidinopropane) dihydrochloride; ABCA1, ATP-binding cassette transporter A1; apoA-I, apolipoprotein A-I; BHT, butylated hydroxytoluene; CV, cardiovascular; EDTA, ethylenediaminetetraacetic acid; HDL-C, high-density lipoprotein cholesterol; LOOH, lipid hydroperoxides; Met(O), methionine sulfoxide; Met112, methionine 112 residue; Met86, methionine 86 residue; oxLDL, oxidized low-density lipoprotein; PBS, phosphate-buffered saline; PC, phosphatidylcholine; PL, phospholipid; PCOOH, phosphatidylcholine hydroperoxide; PLOOH, phospholipid hydroperoxide.  相似文献   

16.
ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 mediate the efflux of cholesterol and other sterols. Both transporters are expressed on the fetal capillaries of the placenta and are involved in maternal-to-fetal cholesterol delivery. In this study, we report that ABCA1 and ABCG1 are also present on the syncytiotrophoblast, the maternal facing placental membrane. Syncytial ABCA1 expression is apical, suggesting a role in cholesterol efflux to the mother, while ABCG1 is expressed basolaterally indicating transport to the fetus. Silencing of ABCA1 expression in primary trophoblasts in culture, or pharmacological antagonism by glyburide, decreased cholesterol efflux to apolipoprotein A-I (apoA-I) compared to controls, while ABCG1-silencing decreased cholesterol efflux to high density lipoproteins (HDL). In contrast, treatment with endogenous or synthetic LXR α/β ligands such as T0901317 increased ABCA1 and ABCG1 expression and enhanced cholesterol efflux to apoA-I and HDL, respectively, while treatment with pharmacological PPAR-α or -γ ligands was without effect. Trophoblasts transfected with ABCA1 or ABCG1 siRNA were more sensitive to toxic oxysterols substrates (25-hydroxycholesterol and 7-ketocholesterol) compared to mock-transfected cells, while prior treatment with T0901317 reduced oxysterol-mediated toxicity. These results identify syncytial ABCA1 and ABCG1 as important, inducible cholesterol transporters which also prevent placental accumulation of cytotoxic oxysterols.  相似文献   

17.
We investigated the significance of hydrophobic and charged residues 218–226 on the structure and functions of apoA-I and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of apoA-I[L218A/L219A/V221A/L222A] in apoA-I−/− mice decreased plasma cholesterol and apoA-I levels to 15% of wild-type (WT) control mice and generated pre-β- and α4-HDL particles. In apoA-I−/− × apoE−/− mice, the same mutant formed few discoidal and pre-β-HDL particles that could not be converted to mature α-HDL particles by excess LCAT. Expression of the apoA-I[E223A/K226A] mutant in apoA-I−/− mice caused lesser but discrete alterations in the HDL phenotype. The apoA-I[218–222] and apoA-I[E223A/K226A] mutants had 20% and normal capacity, respectively, to promote ABCA1-mediated cholesterol efflux. Both mutants had ∼65% of normal capacity to activate LCAT in vitro. Biophysical analyses suggested that both mutants affected in a distinct manner the structural integrity and plasticity of apoA-I that is necessary for normal functions. We conclude that the alteration of the hydrophobic 218–222 residues of apoA-I disrupts apoA-I/ABCA1 interactions and promotes the generation of defective pre-β particles that fail to mature into α-HDL subpopulations, thus resulting in low plasma apoA-I and HDL. Alterations of the charged 223, 226 residues caused milder but discrete changes in HDL phenotype.  相似文献   

18.
The principal protein of high density lipoprotein (HDL), apolipoprotein (apo) A-I, in the lipid-free state contains two tertiary structure domains comprising an N-terminal helix bundle and a less organized C-terminal domain. It is not known how the properties of these domains modulate the formation and size distribution of apoA-I-containing nascent HDL particles created by ATP-binding cassette transporter A1 (ABCA1)-mediated efflux of cellular phospholipid and cholesterol. To address this issue, proteins corresponding to the two domains of human apoA-I (residues 1–189 and 190–243) and mouse apoA-I (residues 1–186 and 187–240) together with some human/mouse domain hybrids were examined for their abilities to form HDL particles when incubated with either ABCA1-expressing cells or phospholipid multilamellar vesicles. Incubation of human apoA-I with cells gave rise to two sizes of HDL particles (hydrodynamic diameter, 8 and 10 nm), and removal or disruption of the C-terminal domain eliminated the formation of the smaller particle. Variations in apoA-I domain structure and physical properties exerted similar effects on the rates of formation and sizes of HDL particles created by either spontaneous solubilization of phospholipid multilamellar vesicles or the ABCA1-mediated efflux of cellular lipids. It follows that the sizes of nascent HDL particles are determined at the point at which cellular phospholipid and cholesterol are solubilized by apoA-I; apparently, this is the rate-determining step in the overall ABCA1-mediated cellular lipid efflux process. The stability of the apoA-I N-terminal helix bundle domain and the hydrophobicity of the C-terminal domain are important determinants of both nascent HDL particle size and their rate of formation.  相似文献   

19.
Recent studies of Tangier disease have shown that the ATP-binding cassette transporter A1 (ABCA1)/apolipoprotein A-I (apoA-I) interaction is critical for high density lipoprotein particle formation, apoA-I integrity, and proper reverse cholesterol transport. However, the specifics of this interaction are unknown. It has been suggested that amphipathic helices of apoA-I bind to a lipid domain created by the ABCA1 transporter. Alternatively, apoA-I may bind directly to ABCA1 itself. To better understand this interaction, we created several truncation mutants of apoA-I and then followed up with more specific point mutants and helix translocation mutants to identify and characterize the locations of apoA-I required for ABCA1-mediated cholesterol efflux. We found that deletion of residues 221-243 (helix 10) abolished ABCA1-mediated cholesterol efflux from cultured RAW mouse macrophages treated with 8-bromo-cAMP. Point mutations in helix 10 that affected the helical charge distribution reduced ABCA1-mediated cholesterol efflux versus the wild type. We noted a strong positive correlation between cholesterol efflux and the lipid binding characteristics of apoA-I when mutations were made in helix 10. However, there was no such correlation for helix translocations in other areas of the protein as long as helix 10 remained intact at the C terminus. From these observations, we propose an alternative model for apolipoprotein-mediated efflux.  相似文献   

20.
Apolipoprotein A-I (apoA-I) has a great conformational flexibility to exist in lipid-free, lipid-poor, and lipid-bound states during lipid metabolism. To address the lipid binding and the dynamic desorption behavior of apoA-I at lipoprotein surfaces, apoA-I, Δ(185-243)apoA-I, and Δ(1-59)(185-243)apoA-I were studied at triolein/water and phosphatidylcholine/triolein/water interfaces with special attention to surface pressure. All three proteins are surface active to both interfaces lowering the interfacial tension and thus increasing the surface pressure to modify the interfaces. Δ(185-243)apoA-I adsorbs much more slowly and lowers the interfacial tension less than full-length apoA-I, confirming that the C-terminal domain (residues 185-243) initiates the lipid binding. Δ(1-59)(185-243)apoA-I binds more rapidly and lowers the interfacial tension more than Δ(185-243)apoA-I, suggesting that destabilizing the N-terminal α-helical bundle (residues 1-185) restores lipid binding. The three proteins desorb from both interfaces at different surface pressures revealing that different domains of apoA-I possess different lipid affinity. Δ(1-59)(185-243)apoA-I desorbs at lower pressures compared with apoA-I and Δ(185-243)apoA-I indicating that it is missing a strong lipid association motif. We propose that during lipoprotein remodeling, surface pressure mediates the adsorption and partial or full desorption of apoA-I allowing it to exchange among different lipoproteins and adopt various conformations to facilitate its multiple functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号