首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Yellow stripe-like (YSL) family transporters, belonging to the oligopeptide transporter family, are significant iron transport proteins. In this study, we provided a genome-wide identification and analysis of the YSL gene family in Pyrus bretschneideri. We found eight YSL gene members in pear, clustered into four main groups in the phylogenetic tree. Segmental duplication has played a key role in the expansion of the pear YSL family. The pollen activity analysis indicated that the low concentration of iron ion was beneficial to both pear pollen germination and pollen tube growth. Among the eight YSL genes, PbrYSL4 had particularly high expression in all pear tissues; it was significantly responsive to change in the external iron ion supply in the pollen cultivation in vitro. Moreover, expression of PbrYSL4 in yeast mutant Δccc1 (Ca 2+ -sensitive cross-complementer 1 mutant) made Δccc1 restore growth in high iron medium. These data together suggest that PbrYSL4 was involved in the movement of iron in the pear pollen tube growth.  相似文献   

2.
Cytosolic free calcium ([Ca2+]cyt), which is essential during pollen germination and pollen tube growth, can be sensed by calmodulin-like proteins (CMLs). The Arabidopsis thaliana genome encodes over 50 CMLs, the physiological role(s) of most of which are unknown. Here we show that the gene AtCML24 acts as a regulator of pollen germination and pollen tube extension, since the pollen produced by loss-of-function mutants germinated less rapidly than that of wild-type (WT) plants, the rate of pollen tube extension was slower, and the final length of the pollen tube was shorter. The [Ca2+]cyt within germinated pollen and extending pollen tubes produced by the cml24 mutant were higher than their equivalents in WT plants, and pollen tube extension was less sensitive to changes in external [K+] and [Ca2+]. The pollen and pollen tubes produced by cml24 mutants were characterized by a disorganized actin cytoskeleton and lowered sensitivity to the action of latrunculin B. The observations support an interaction between CML24 and [Ca2+]cyt and an involvement of CML24 in actin organization, thereby affecting pollen germination and pollen tube elongation.  相似文献   

3.
Calcium (Ca2+) plays crucial roles in regulation of pollen tube growth. The influx of Ca2+ into the pollen tube is mediated by ion channels, and the density and activity of Ca2+ channels in pollen plasma membranes critically determines their electrical properties. In this report, using whole-cell and single-channel patch-clamping techniques, we investigated developmental changes of hyperpolarization-activated Ca2+ channel activity in pear (Pyrus pyrifolia) pollen and its relationship with pollen viability. For both pollen and pollen tubes, hyperpolarization-activated Ca2+ channels had the same conductance and cAMP sensitivity, indicating that they were the same channels. However, the Ca2+ current density in pollen tube protoplasts was greater than that in pollen protoplasts. Compared with day-3 flowers’ pollen, hyperpolarization-activated Ca2+ current density was significantly lower in day 0 and day 3 flowers’ pollen, which was consistent with the pollen germination and pollen tube growth, indicating that pollen protoplasts’ increased Ca2+ current density may have enhanced the pollen viability. During pollen tube elongation, pollen tube plasma membrane Ca2+ current density increased with increased length pollen tubes up to 300 μm. All of these results indicated that hyperpolarization-activated Ca2+ channel activity was associated with in pear pollen development and may have a causal link between Ca2+ channel activity and pollen viability.  相似文献   

4.
5.
Reactive oxygen species (ROS) and calcium (Ca2+), two crucial intracellular signaling molecules, have been reported to play important roles in chlorophyll biosynthesis. In this study, we aimed to investigate whether disturbance of chlorophyll synthesis affects chloroplast ROS and Ca2+ homeostases. Chlorophyll biosynthesis was inhibited at the Mg branch by virus-induced gene silencing (VIGS) of CHLI gene encoding the Mg chelatase CHLI subunit in pea (Pisum sativum). Subsequently, ROS and intracellular free Ca2+ concentration ([Ca2+]i) in these chlorophyll-deficient pea plants were evaluated by histochemical and fluorescent staining assays. The results showed that the superoxide anion and hydrogen peroxide were predominantly generated in chloroplasts of the yellow leaves of pea VIGS-CHLI plants. The expression of genes encoding chloroplast antioxidant enzymes (CuZn-superoxide dismutase, ascorbate peroxidase, glutathione reductase, phospholipid glutathione peroxidase, peroxiredoxin and thioredoxins) were also decreased in the leaves of VIGS-CHLI plants compared with the control plants. Additionally, the [Ca2+]i were significantly reduced in the yellow leaves of VIGS-CHLI plants compared with the green leaves of VIGS-GFP control plants. The expression of genes encoding Ca2+ signaling related proteins (thylakoid Ca2+ transporter, calmodulins and calcineurin B-like protein) was down-regulated in yellow VIGS-CHLI leaves. These results indicate that inhibition of chlorophyll biosynthesis at the Mg branch by silencing CHLI affects chloroplast ROS homeostasis and Ca2+ signaling and down-regulates the expression of ROS scavenging genes and Ca2+ signaling related genes.  相似文献   

6.
Mus musculus centrin 1 (MmCen1) is located at the cilium of photoreceptor cells connecting the outer segment through signal transduction components to the metabolically active inner segment. In the cilium, MmCen1 is involved in the translocation of transducin between compartments as a result of photoreceptor activation. In this study, we report the crystal structure of wild-type MmCen1 and its Ca2+-binding properties using structure-based mutagenesis. The crystal structure exhibits three structural features, i.e. four Ca2+ equally occupied at each EF-hand motif, structural changes accompanying helix motion at the N- and C-lobes, and adoption of N–C type dimerization when Ca2+ binds to EF-hand I and II in the N-lobe. The presence of MmCen1 dimers was confirmed in solution by native PAGE. Isothermal titration calorimetry data showed sequential binding of Ca2+ at four independent sites. Mutations S45A and D49A in EF-hand I alone disrupted the Ca2+-binding property of the wild-type protein. Based on the crystal structure of MmCen1, we suggest that a dimerization mode between the N- and C-lobes may be required by Ca2+ binding at the N-lobe.  相似文献   

7.
Symmetry/asymmetry conversion of eukaryotic flagellar waveform is caused by the changes in intracellular Ca2+. Animal sperm flagella show symmetric or asymmetric waveform at lower or higher concentration of intracellular Ca2+, respectively. In Chlamydomonas, high Ca2+ induces conversion of flagellar waveform from asymmetric to symmetry, resulting in the backward movement. This mirror image relationship between animal sperm and Chlamydomonas could be explained by the distinct calcium sensors used to regulate the outer arm dyneins (Inaba 2015). Here we analyze the flagellar Ca2+-response of the prasinophyte Pterosperma cristatum, which shows backward movement by undulating four flagella, the appearance similar to animal sperm. The moving path of Pterosperma shows relatively straight in artificial seawater (ASW) or ASW in the presence of a Ca2+ ionophore A23187, whereas it becomes circular in a low Ca2+ solution. Analysis of flagellar waveform reveals symmetric or asymmetric waveform propagation in ASW or a low Ca2+ solution, respectively. These patterns of flagellar responses are completely opposite to those in sperm flagella of the sea urchin Anthocidaris crassispina, supporting the idea previously proposed that the difference in flagellar response to Ca2+ attributes to the evolutional innovation of calcium sensors of outer arm dynein in opisthokont or bikont lineage.  相似文献   

8.
9.
This study aimed to overexpress a glucose oxidase gene (GOD1) in Aureobasidium sp. P6 to achieve Ca2+-gluconic acid (GA) overproduction. The GOD1 gene was cloned, deleted, and overexpressed. A protein deduced from the GOD1 gene of Aureobasidium sp. P6 strain had 1824 bp that encoded a protein with 606 amino acids, with a conserved NADB-ROSSMAN domain and a GMC-oxred domain. Deleting the GOD1 gene made the disruptant GOK1 completely lose the ability to produce GA and GOD1 activity, whereas overexpressing the GOD1 gene rendered the transformant GOEX8 to produce considerably more Ca2+-GA (160.5?±?5.6 g/L) and higher GOD1 activity (1438.6?±?73.2 U/mg of protein) than its parent P6 strain (118.7?±?4.3 g/L of Ca2+-GA and 1100.0?±?23.6 U/mg of GOD1 protein). During a 10-L fermentation, the transformant GOEX8 grown in the medium containing 160.0 g/L of glucose produced 186.8?±?6.0 g/L of Ca2+-GA, the yield was 1.2 g/g of glucose, and the volumetric productivity was 1.7 g/L/h. Most of the produced GOD1 were located in the yeast cell wall. The purified product was identified to be a GA. The transformant GOEX8 overexpressing the GOD1 gene could produce considerably more Ca2+-GA (186.8?±?6.0 g/L) than its wild-type strain P6.  相似文献   

10.
Ribosomal protein S1 of Mycobacterium tuberculosis (MtRpsA) binds to ribosome and mRNA, and plays significant role in the regulation of translation initiation, conventional protein synthesis and transfer-messenger RNA (tmRNA) mediated trans-translation. It has been identified as the target of pyrazinoic acid (POA), a bactericidal moiety from hydrolysis of pyrazinamide, which is a mainstay of combination therapy for tuberculosis. POA prevented the interactions between the C-terminal S1 domain of MtRpsA (residues 280–368, MtRpsACTD_S1) and tmRNA; so that POA can inhibit the trans-translation, which is a key component of multiple quality control pathways in bacteria. However, the details of molecular mechanism and dynamic characteristics for MtRpsACTD_S1 interactions with POA, tmRNA or mRNA are still unclear. Here we present the 1H, 15N, 13C resonance assignments of MtRpsACTD_S1 as well as the secondary structure information based on backbone chemical shifts, which lay foundation for further solution structure determination, dynamic properties characterization and interactions investigation between MtRpsACTD_S1 and tmRNA, RNA or POA.  相似文献   

11.
Cation/H+ exchangers (CAXs) are membrane proteins that transport Ca2+ and other cations using the H+ gradient generated by H+-ATPase or H+-pyrophosphatase. This study reports the characterization of CAX2 from Puccinellia tenuiflora with respect to molecular and functional properties. PutCAX2 was cloned from a cDNA library of P. tenuiflora seedlings. The expression of PutCAX2 in shoots and roots was induced by Ca2+ and Ba2+ treatments. A green fluorescent protein (GFP) marker revealed that PutCAX2 was located on the endoplasmic reticulum (ER) membrane. Four yeast transformants were created using GFP fusion PutCAX2 and truncated PutCAX2s, and their growth in the presence of various cations (Fe3+, Al3+, Mn2+, Cu2+, Co2+, Ni2+, Mg2+, Zn2+, Na+, Li+, Ca2+, and Ba2+) was analyzed. The N-terminally truncated PutCAX2 (GFP-ΔNPutCAX2) and the N and C-terminally truncated PutCAX2 (GFP-ΔNCPutCAX2) transformants grew well in the presence of 100 and 150 mM Ca2+ or 8 and 20 mM Ba2+, whereas the GFP-PutCAX2 and C-terminally truncated PutCAX2 (GFP-ΔCPutCAX2) transformants did not show any tolerance to Ca2+ or Ba2+. The Ba2+ content in whole yeast cells expressing GFP-ΔNPutCAX2 or GFP-ΔNCPutCAX2 was lower than that in other yeast transformants. Moreover, the efflux experiment showed that the Ba2+ efflux rate of yeast cells expressing GFP-ΔNPutCAX2 and GFP-ΔNCPutCAX2 was higher than that of other yeast cells. To our knowledge, this is the first report on the molecular and functional characterization of a novel ER-localized CAX protein from a wild halophyte plant; the results suggest that the N-terminus of PutCAX2 acts as an auto-inhibitory domain, which affects the Ca2+ and Ba2+ tolerance of yeast.  相似文献   

12.
One important mechanism plants use to cope with salinity is keeping the cytosolic Na+ concentration low by sequestering Na+ in vacuoles, a process facilitated by Na+/H+ exchangers (NHX). There are eight NHX genes (NHX1 through NHX8) identified and characterized in Arabidopsis thaliana. Bioinformatics analyses of the known Arabidopsis genes enabled us to identify six Medicago truncatula NHX genes (MtNHX1, MtNHX2, MtNHX3, MtNHX4, MtNHX6, and MtNHX7). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving A. thaliana, Glycine max, Phaseolus vulgaris, and M. truncatula revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment, M. truncatula exhibited ~?20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl? contents increased by 152 and 162%, respectively. Na+ exclusion may be responsible for the relatively smaller increase in Na+ concentration in roots under salt stress as compared to Cl?. Decline in tissue K+ concentration under salinity was not surprising as some antiporters play an important role in transporting both Na+ and K + . MtNHX1, MtNHX6, and MtNHX7 display high expression in roots and leaves. MtNHX3, MtNHX6, and MtNHX7 were induced in roots under salinity stress. Expression analysis results indicate that sequestering Na+ into vacuoles may not be the principal component trait of the salt tolerance mechanism in M. truncatula and other component traits may be pivotal.  相似文献   

13.
In the present study, we investigated the protective mechanism of paeoniflorin (PF), a monoterpene glycoside extracted from Radix Paeoniae alba roots, on MPP+-induced neurotoxicity in cultured rat pheochromocytoma cells (PC12). Our work included examination of cell viability assessment, amounts of released lactic dehydrogenase (LDH), intracellular Ca2+ concentration, cell apoptosis, mitochondrial membrane potential, caspase-3 activity, and expression profiling of two apoptosis-related genes (Bcl-2 and Bax). It was shown that, PF functioned as an MPP+ antagonist, being able to suppress apoptosis, decrease LDH release and Ca2+ concentration, attenuate membrane potential collapse and, inhibit caspase-3 activation, decrease in Bax/Bcl-2 ratio. These observations suggest that PF could protect PC12 cells against MPP+-induced injury and the mechanism PF’s neuroprotective effect was closely associated with Bcl-2 up-regulation and Bax down-regulation. PF has neuroprotective effects on MPP+-induced apoptosis in PC12 cells via regulating mitochondrial membrane potential and Bcl-2/Bax/caspase-3 signaling pathways, and this new insight will help develop a PF-based therapeutic strategy for treatmenting neurodegenerative diseases and injury.  相似文献   

14.
The Na+/H+ antiporters play an important role in salt tolerance in plants. However, the functions of OsNHXs in rice except OsNHX1 have not been well studied. Using the gain- and loss-of-function strategies, we studied the potential role of OsNHX2 in salt tolerance in rice. Overexpression of OsNHX2 (OsNHX2-OE) in rice showed the significant tolerance to salt stress than wild-type plants and OsNHX2 knockdown transgenic plants (OsNHX2-KD). Under salt treatments of 300-mM NaCl for 5 days, the plant fresh weights, relative water percentages, shoot heights, Na+ contents, K+ contents, and K+/Na+ ratios in leaves of OsNHX2-OE transgenic plants were higher than those in wild-type plants, while no differences were detected in roots. K+/Na+ ratios in rice leaf mesophyll cells and bundle sheath cells were higher in OsNHX2-OE transgenic plants than in wild-type plants and OsNHX2-KD transgenic plants. Our data indicate that OsNHX2 plays an important role in salt stress based on leaf mesophyll cells and bundle sheath cells and can be served in genetically engineering crop plants with enhanced salt tolerance.  相似文献   

15.
The phytotoxic aluminum species (Al3+) is considered as the primary factor limiting crop productivity in over 40 % of world’s arable land that is acidic. We evaluated the responses of two wheat cultivars (Triticum aestivum L.) with differential Al resistance, cv. Yecora E (Al-resistant) and cv. Dio (Al-sensitive), exposed to 0, 37, 74 and 148 μM Al for 14 days in hydroponic culture at pH 4.5. With increasing Al concentration, leaf Ca2+ and Mg2+ content decreased, as well as the effective quantum yield of photosystem II (PSII) photochemistry (Φ PSII ), while a gradual increase in leaf membrane lipid peroxidation, Al accumulation, photoinhibition (estimated as F v /F m ), and PSII excitation pressure (1 ? q p ) occurred. However, the Al-resistant cultivar with lower Al accumulation, retained larger concentrations of Ca2+ and Mg2+ in the leaves and kept a larger fraction of the PSII reaction centres (RCs) in an open configuration, i.e. a higher ratio of oxidized to reduced quinone A (QA), than plants of the Al-sensitive cultivar. Four times higher Al concentration in the nutrient solution was required for Al-resistant plants (148 μM Al) than for Al-sensitive (37 μM Al), in order to establish the same closed RCs. Yet, the decline in photosynthetic efficiency in the cultivar Dio was not only due to closure of PSII RCs but also to a decrease in the quantum yield of the open RCs. We suggest that Al3+ toxicity may be mediated by nutrient deficiency and oxidative stress, and that Al-resistance of the wheat cultivar Yecora E, may be due at least partially, from the decreased Al accumulation that resulted to decreased reactive oxygen species (ROS) formation. However, under equal internal Al accumulation (exposure Al concentration: Dio 74 μM, Yecora E 148 μM) that resulted to the same oxidative stress, the reduced PSII excitation pressure and the better PSII functioning of the Al-resistant cultivar was probably due to the larger concentrations of Ca2+ and Mg2+ in the leaves. We propose that the different sensitivities of wheat cultivars to Al3+ toxicity can be correlated to differences in the redox state of QA. Thus, chlorophyll fluorescence measurements can be a promising tool for rapid screening of Al resistance in wheat cultivars.  相似文献   

16.
We report almost complete sequence specific 1H, 13C and 15N NMR assignments of an unusual Ca2+-binding protein from Entamoeba histolytica (EhCaBP6) in its apo form as a prelude to its structural and functional characterization.  相似文献   

17.
18.
The gene expression profile chip of salt-resistant wheat mutant RH8706-49 under salt stress was investigated. The overall length of the cDNA sequence of the probe was obtained using electronic cloning and RT-PCR. An unknown gene induced by salt was obtained, cloned, and named TaDi19 (Triticum aestivum drought-induced protein). No related report or research on the protein is available. qPCR analysis showed that gene expression was induced by many stresses, such as salt. Arabidopsis thaliana was genetically transferred using the overexpressing gene, which increased its salt tolerance. After salt stress, the transgenic plant demonstrated better physiological indicators (higher Ca2+ and lower Na+) than those of the wild-type plant. Results of non-invasive micro-test technology indicate that TaDi19-overexpressing A. thaliana significantly effluxed Na+ after salt treatment, whereas the wild-type plant influxed Na+. Chelating extracellular Ca2+ resulted in insignificant differences in salt tolerance between overexpressing and wild-type A. thaliana. Subcellular localization showed that the gene encoding protein was mainly located in the cell membrane and nucleus. TaDi19 was overexpressed in wild-type A. thaliana, and the transgenic lines were more salt-tolerant than the control A. thaliana. Thus, the wheat gene TaDi19 could increase the salt tolerance of A. thaliana.  相似文献   

19.
Kinetics of the reduction of the hemes in cytochrome c oxidase in the presence of high concentration of ruthenium(III)hexaammine chloride was examined using a stopped-flow spectrophotometer. Upon mixing of the oxidized enzyme with dithionite and Ru(NH3) 6 3+ , three well-resolved phases were observed: heme a reduction reaching completion within a few milliseconds is followed by two slow phases of heme a 3 reduction. The difference spectrum of heme a 3 reduction in the visible region is characterized by a maximum at ~612 nm, rather than at 603 nm as was believed earlier. It is shown that in the case of bovine heart cytochrome c oxidase containing a special cation-binding site in which reversible binding of calcium ion occurs, heme a 3 reduction is slowed down by low concentrations of Ca2+. The effect is absent in the case of the bacterial cytochrome oxidase in which the cation-binding site contains a tightly bound Ca2+ ion. The data corroborate the inhibition of the cytochrome oxidase enzymatic activity by Ca2+ ions discovered earlier and indicate that the cation affects intramolecular electron transfer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号