首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
转录因子Egr-1参与长期性恐惧记忆和焦虑   总被引:1,自引:0,他引:1  
Ko SW  Ao HS  Mendel AG  Qiu CS  Wei F  Milbrandt J  Zhuo M 《生理学报》2005,57(4):421-432
锌指转录因子点Egr-1在将细胞外信号和胞内基因表达的变化相耦联过程中发挥重要的作用。海马和杏仁体是记忆形成和储存的两个主要的脑区。在海马和杏仁体中,Egr-1可被长时程增强(long-term potentiation,LTP)和学习过程上调。在Egr-1敲除小鼠上观察到晚时相声音恐惧记忆受损,而短时的痕迹和场景记忆却不受影响;另外,在Egr-1敲除小鼠上,用theta burst刺激杏仁体和听觉皮层所引起的突触增强被明显减弱或完全阻断。因此,我们的研究表明,转录因子Egr-1选择性地在晚时相听觉恐惧记忆中发挥作用。  相似文献   

2.
Wu LJ  Ren M  Wang H  Kim SS  Cao X  Zhuo M 《PloS one》2008,3(1):e1407
Neurabin is a scaffolding protein that interacts with actin and protein phosphatase-1. Highly enriched in the dendritic spine, neurabin is important for spine morphogenesis and synaptic formation. However, less is known about the role of neurabin in hippocampal plasticity and its possible effect on behavioral functions. Using neurabin knockout (KO) mice, here we studied the function of neurabin in hippocampal synaptic transmission, plasticity and behavioral memory. We demonstrated that neurabin KO mice showed a deficit in contextual fear memory but not auditory fear memory. Whole-cell patch clamp recordings in the hippocampal CA1 neurons showed that long-term potentiation (LTP) was significantly reduced, whereas long-term depression (LTD) was unaltered in neurabin KO mice. Moreover, increased AMPA receptor but not NMDA receptor-mediated synaptic transmission was found in neurabin KO mice, and is accompanied by decreased phosphorylation of GluR1 at the PKA site (Ser845) but no change at the CaMKII/PKC site (Ser831). Pre-conditioning with LTD induction rescued the following LTP in neurabin KO mice, suggesting the loss of LTP may be due to the saturated synaptic transmission. Our results indicate that neurabin regulates contextual fear memory and LTP in hippocampal CA1 pyramidal neurons.  相似文献   

3.
We investigated the involvement of the 65 kDa isoform of glutamic acid decarboxylase (GAD65) and GAD65-mediated γ-aminobutyric acid (GABA) synthesis in the formation and expression of Pavlovian fear memory. To this end, behavioral, endocrine and autonomic parameters were examined during conditioned fear retrieval of mice with targeted ablation of the GAD65 gene (GAD65–/– mice). These mutant mice were found to display specific fear behavior (freezing, escape), as well as autonomic (increased defecation) and endocrine activation (increased plasma corticosterone) during fear memory retrieval. However, freezing was reduced and flight and escape behavior were increased in GAD65–/– mice compared to their wild type and heterozygous littermates, while corticosterone levels and defecation rates did not differ between genotypes. Active defensive behavior of GAD65–/– mice was observed during both auditory cued and contextual retrieval of fear memory, as well as immediately after conditioning. These data indicate a selectively altered behavioral fear response in GAD65–/– mice, most likely due to deficits in threat estimation or the elicitation of appropriate conditioned fear behavior, and suggest that GAD65 is a genetic determinant of conditioned fear behavior. GAD65–/– mice provide a valuable tool to further dissect the GABAergic mechanisms involved in fear and anxiety and to model GABA-related neurological and psychiatric disorders.  相似文献   

4.
Identifying higher brain central region(s) that are responsible for the unpleasantness of pain is the focus of many recent studies. Here we show that direct stimulation of the anterior cingulate cortex (ACC) in mice produced fear-like freezing responses and induced long-term fear memory, including contextual and auditory fear memory. Auditory fear memory required the activation of N-methyl-D-aspartate (NMDA) receptors in the amygdala. To test the hypothesis that neuronal activity in the ACC contributes to unpleasantness, we injected a GABAA receptor agonist, muscimol bilaterally into the ACC. Both contextual and auditory memories induced by foot shock were blocked. Furthermore, activation of metabotropic glutamate receptors in the ACC enhanced behavioral escape responses in a noxious hot-plate as well as spinal nociceptive tail-flick reflex. Our results provide strong evidence that the excitatory activity in the ACC contribute to pain-related fear memory as well as descending facilitatory modulation of spinal nociception.  相似文献   

5.
Inductive expression of early growth response 1 (Egr-1) in neurons is associated with many forms of neuronal activity. However, only a few Egr-1 target genes are known in the brain. The results of this study demonstrate that Egr-1 knockout (KO) mice display impaired contextual extinction learning and normal fear acquisition relative to wild-type (WT) control animals. Genome-wide microarray experiments revealed 368 differentially expressed genes in the hippocampus of Egr-1 WT exposed to different phases of a fear conditioning paradigm compared to gene expression profiles in the hippocampus of KO mice. Some of genes, such as serotonin receptor 2C (Htr2c), neuropeptide B (Npb), neuronal PAS domain protein 4 (Npas4), NPY receptor Y1 (Npy1r), fatty acid binding protein 7 (Fabp7), and neuropeptide Y (Npy) are known to regulate processing of fearful memories, and promoter analyses demonstrated that several of these genes contained Egr-1 binding sites. This study provides a useful list of potential Egr-1 target genes which may be regulated during fear memory processing.  相似文献   

6.
7.
Apelin-13, as an endogenous neuropeptide, is the ligand for the G-protein-coupled receptor, APJ, which has recently been demonstrated to be involved in the process that contributes to learning and memory. Previous studies showed that apelin may be required for certain forms of learning and memory. Up to date, the role of apelin in fear memory has not been explored. In the present study, we tested the effects of apelin-13 (1.0, 2.0 and 4.0 µg/rat) on contextual fear conditioning (experiment 1), consolidation (experiment 2) and expression (experiment 3) in rats. A well established fear conditioning protocol was used, which contained three training phases: habituation, fear conditioning and test. Apelin-13 was i.c.v injected 10 min before conditioning (experiment 1), immediately after conditioning (experiment 2) or 10 min before testing (experiment 3). The values of percent freezing were used to measure fear. We found that only 2.0 µg apelin-13 administrations produced a decrease freezing in experiment 1. The most effective dose of apelin-13 (2.0 µg) was selected, but it had no effect on freezing in experiment 2 and 3. Furthermore, the decreased freezing in experiment 1 was not attributed to the deficits of locomotor activity and foot-shock sensitivity. These results, for the first time, indicated that apelin-13 impaired fear acquisition but not fear consolidation or expression.  相似文献   

8.
9.
Epigenetic mechanisms, including histone acetylation and DNA methylation, have been widely implicated in hippocampal-dependent learning paradigms. Here, we have examined the role of epigenetic alterations in amygdala-dependent auditory Pavlovian fear conditioning and associated synaptic plasticity in the lateral nucleus of the amygdala (LA) in the rat. Using Western blotting, we first show that auditory fear conditioning is associated with an increase in histone H3 acetylation and DNMT3A expression in the LA, and that training-related alterations in histone acetylation and DNMT3A expression in the LA are downstream of ERK/MAPK signaling. Next, we show that intra-LA infusion of the histone deacetylase (HDAC) inhibitor TSA increases H3 acetylation and enhances fear memory consolidation; that is, long-term memory (LTM) is enhanced, while short-term memory (STM) is unaffected. Conversely, intra-LA infusion of the DNA methyltransferase (DNMT) inhibitor 5-AZA impairs fear memory consolidation. Further, intra-LA infusion of 5-AZA was observed to impair training-related increases in H3 acetylation, and pre-treatment with TSA was observed to rescue the memory consolidation deficit induced by 5-AZA. In our final series of experiments, we show that bath application of either 5-AZA or TSA to amygdala slices results in significant impairment or enhancement, respectively, of long-term potentiation (LTP) at both thalamic and cortical inputs to the LA. Further, the deficit in LTP following treatment with 5-AZA was observed to be rescued at both inputs by co-application of TSA. Collectively, these findings provide strong support that histone acetylation and DNA methylation work in concert to regulate memory consolidation of auditory fear conditioning and associated synaptic plasticity in the LA.  相似文献   

10.
It is well established that β-adrenoceptors (β-ARs) in the hippocampal CA1 region are involved in regulating synaptic plasticity and are essential for acquisition and consolidation of spatial memory and contextual fear memory. Previous studies reported that β-ARs in the CA1 region are also involved in memory retrieval. The present study re-examined the role of hippocampal β-ARs in retrieval of conditioned contextual fear. We bilaterally infused a high dose of the β-AR antagonist propranolol (15 μg in 1 μl saline) into the CA1 region 30 min before retention test and found that propranolol produced no deficit in retrieval of either 1-day or 7-day contextual fear. We then examined if β-AR stimulation would produce a beneficial effect. The β-AR agonist isoproterenol (10 μg in 1 μl saline) was infused into the CA1 region 30 min before retention test. Surprisingly, isoproterenol did not enhance but severely disrupted retrieval of 7-day contextual fear memory, with no impact on retrieval of 1-day contextual fear memory. The present study argues against the previous conclusion that β-ARs in the CA1 region play a role in memory retrieval. β-ARs in the CA1 region may be dispensable for retrieval of conditioned contextual fear.  相似文献   

11.
The calcium dysregulation hypothesis of brain aging posits that an age-related increase in neuronal calcium concentration is responsible for alterations in a variety of cellular processes that ultimately result in learning and memory deficits in aged individuals. We previously generated a novel transgenic mouse line, in which expression of the L-type voltage-gated calcium, CaV1.3, is increased by ~50% over wild-type littermates. Here, we show that, in young mice, this increase is sufficient to drive changes in neuronal physiology and cognitive function similar to those observed in aged animals. Specifically, there is an increase in the magnitude of the postburst afterhyperpolarization, a deficit in spatial learning and memory (assessed by the Morris water maze), a deficit in recognition memory (assessed in novel object recognition), and an overgeneralization of fear to novel contexts (assessed by contextual fear conditioning). While overexpression of CaV1.3 recapitulated these key aspects of brain aging, it did not produce alterations in action potential firing rates, basal synaptic communication, or spine number/density. Taken together, these results suggest that increased expression of CaV1.3 in the aged brain is a crucial factor that acts in concert with age-related changes in other processes to produce the full complement of structural, functional, and behavioral outcomes that are characteristic of aged animals.  相似文献   

12.
Sacchetti B  Scelfo B  Tempia F  Strata P 《Neuron》2004,42(6):973-982
To better understand learning mechanisms, one needs to study synaptic plasticity induced by behavioral training. Recently, it has been demonstrated that the cerebellum is involved in the consolidation of fear memory. Nevertheless, how the cerebellum contributes to emotional behavior is far from known. In cerebellar slices at 10 min and 24 hr following fear conditioning, we found a long-lasting potentiation of the synapse between parallel fibers and Purkinje cells in vermal lobules V-VI, but not in the climbing fiber synapses. The mechanism is postsynaptic, due to an increased AMPA response. In addition, in hotfoot mice with a primary deficiency of the parallel fiber to Purkinje cell synapse, cued (but not contextual) fear conditioning is affected. We propose that this synapse plays an important role in the learned fear and that its long-term potentiation may represent a contribution to the neural substrate of fear memory.  相似文献   

13.
14.
Behavioral analyses of genetically modified and inbred strains of mice have revealed neural systems and molecules that are involved in memory formation. Many of these studies have examined memories that form in contextual fear conditioning, in which an organism learns that a particular context signals the occurrence of a footshock. During fear extinction, nonreinforced exposure to the context results in the loss of the conditioned fear response. The study of extinction has been instrumental for behavioral and molecular theories of memory. However, many of the transgenic, knockout, and inbred strains of mice that have been widely studied in memory have behavioral deficits in contextual fear conditioning, which makes the study of extinction in these mice particularly challenging. Here we explore several strategies for studying extinction in C57BL/6 and DBA/2 mice, two strains known to differ in contextual fear conditioning. First, we attempt to equate performance prior to extinction through several extensive conditioning protocols. Second, we examine extinction in subsets of mice matched for initial levels of context conditioning. Third, we examine within-strain effects of variables known to affect extinction. Differences between the strains persisted across extensive conditioning and extinction protocols, but both strains were sensitive to session duration and context manipulations during extinction. We describe the implications of our results for behavioral and neurobiological approaches to extinction, and we examine the general challenges in studying extinction in subjects that differ in learning or performance prior to extinction.  相似文献   

15.
The receptor for advanced glycation end-products (RAGE) is a multi-ligand receptor that belongs to the immunoglobulin superfamily of cell surface receptors. In diabetes and Alzheimer''s disease, pathological progression is accelerated by activation of RAGE. However, how RAGE influences gross behavioral activity patterns in basal condition has not been addressed to date. In search for a functional role of RAGE in normal mice, a series of standard behavioral tests were performed on adult RAGE knockout (KO) mice. We observed a solid increase of home cage activity in RAGE KO. In addition, auditory startle response assessment resulted in a higher sensitivity to auditory signal and increased prepulse inhibition in KO mice. There were no significant differences between KO and wild types in behavioral tests for spatial memory and anxiety, as tested by Morris water maze, classical fear conditioning, and elevated plus maze. Our results raise a possibility that systemic therapeutic treatments to occlude RAGE activation may have adverse effects on general activity levels or sensitivity to auditory stimuli.  相似文献   

16.
17.
Regulation of histone acetylation during memory formation in the hippocampus   总被引:16,自引:0,他引:16  
Formation of long term memory begins with the activation of many disparate signaling pathways that ultimately impinge on the cellular mechanisms regulating gene expression. We investigated whether mechanisms regulating chromatin structure were activated during the early stages of long term memory formation in the hippocampus. Specifically, we investigated hippocampal histone acetylation during the initial stages of consolidation of long term association memories in a contextual fear conditioning paradigm. Acetylation of histone H3 in area CA1 of the hippocampus was regulated in contextual fear conditioning, an effect dependent on activation of N-methyl-D-aspartic acid (NMDA) receptors and ERK, and blocked using a behavioral latent inhibition paradigm. Activation of NMDA receptors in area CA1 in vitro increased acetylation of histone H3, and this effect was blocked by inhibition of ERK signaling. Moreover, activation of ERK in area CA1 in vitro through either the protein kinase C or protein kinase A pathways, biochemical events known to be involved in long term memory formation, also increased histone H3 acetylation. Furthermore, we observed that elevating levels of histone acetylation through the use of the histone deacetylase inhibitors trichostatin A or sodium butyrate enhanced induction of long term potentiation at Schaffer-collateral synapses in area CA1 of the hippocampus, a candidate mechanism contributing to long term memory formation in vivo. In concert with our findings in vitro, injection of animals with sodium butyrate prior to contextual fear conditioning enhanced formation of long term memory. These results indicate that histone-associated heterochromatin undergoes changes in structure during the formation of long term memory. Mimicking memory-associated changes in heterochromatin enhances a cellular process thought to underlie long term memory formation, hippocampal long term potentiation, and memory formation itself.  相似文献   

18.
19.
20.
The three major human apoE isoforms (apoE2, apoE3 and apoE4) are encoded by distinct alleles (?2, ?3 and ?4). Compared with ?3, ?4 is associated with increased risk to develop Alzheimer's disease (AD), cognitive impairments in Parkinson's disease (PD), and other conditions. In contrast, a recent study indicated an increased susceptibility to the recurring and re‐experiencing symptom cluster of Post‐Traumatic Stress Disorder (PTSD), as well as related memory impairments, in patients carrying at least one ?2 allele. Contextual fear conditioning and extinction are used in human and animal models to study this symptom cluster. In this study, acquisition (day 1, training), consolidation (day 2, first day of re‐exposure) and extinction (days 2–5) of conditioned contextual fear in human apoE2, apoE3 and apoE4 targeted replacement and C57BL/6J wild‐type (WT) mice was investigated. Male and female apoE2 showed acquisition and retrieval of conditioned fear, but failed to exhibit extinction. In contrast, WT, apoE3 and apoE4 mice showed extinction. While apoE2 mice exhibited lower freezing in response to the context on day 2 than apoE3 and apoE4 mice, this cannot explain their extinction deficit as WT mice exhibited similar freezing levels as apoE2 mice on day 2 but still exhibited extinction. Elevating freezing through extended training preserved extinction in controls, but failed to ameliorate extinction deficits in apoE2 animals. These data along with clinical data showing an association of apoE2 with susceptibility to specific symptom clusters in PTSD supports an important role for apoE isoform in the extinction of conditioned fear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号