首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 876 毫秒
1.
Anomalous proton selectivity in a large channel: colicin A   总被引:1,自引:0,他引:1  
Some of the bactericidal proteins known as colicins exert their toxic action by forming a large, nonselective channel in the inner membrane of target bacteria. The structure of this channel is unknown. It conducts large ions but has a much smaller conductance than would be expected for a channel of its deduced size. Here we report that the colicin channel, particularly the colicin A channel, is selective for protons over other cations (and anions) by many orders of magnitude. This was deduced from measurements of reversal potentials in pH gradients across planar lipid bilayers containing these channels. For example, in symmetric 0.1 M KCl with a pH 5/pH 8 gradient across the membrane, the reversal potential of colicin A is -21 mV, rather than 0. Such a result would be unremarkable for a narrow channel but is beyond explanation by current understanding of permeation for a channel of its diameter. For this reason, we re-examined the issue of the diameter of the channel lumen and confirmed that the lumen is indeed "too large" ( approximately 10 A) to select for protons by the amount that we measure. We are thus compelled to propose that an unorthodox mechanism is at work in this protein.  相似文献   

2.
Colicin E1 is a plasmid-encoded bacteriocidal protein which, though water soluble when secreted by its host bacterium, spontaneously interacts with planar lipid bilayers to form voltage-gated ion channels. In asolectin bilayers, the preference for anions over cations exhibited by these channels at low pH can be reversed by raising the pH on either side of the membrane. When incorporated into membranes composed of either of the two zwitterionic lipids, bacterial phosphatidylethanolamine and diphytanoyl phosphatidylcholine, colicin E1 channels were nearly ideally anion selective in the limit of low pH and moderately cation selective at the high pH limit. In phosphatidylcholine membranes, however, the response of these channels to changes in pH exhibited a pattern of behavior peculiar to this lipid. If the side of the membrane on which the protein had been introduced (the cis side) was exposed to pH 4.0, all the channels in the bilayer, whether opened or closed, became refractory to further changes in pH. This irreversibility has been interpreted as evidence that the selectivity of colicin E1 is under the control of a pH-sensitive conformational change. Protonation of groups on the cis side of the membrane appear to be essential to the conversion to the anion-selective state. These groups are rendered kinetically inaccessible to the aqueous phase when the transition takes place in phosphatidylcholine membranes.  相似文献   

3.
The antibiotic protein colicin E1 forms ion channels in planar lipid bilayers that are capable of conducting monovalent organic cations having mean diameters of at least 9 Å. Polyvalent organic cations appear to be completely impermeant, regardless of size. All permeant ions, whether large or small, positively or negatively charged, are conducted by this channel at very slow rates. We have examined the permeability of colicin E1 channels to anionic probes having a variety of sizes, shapes, and charge distributions. In contrast to the behavior of cations, polyvalent as well as monovalent organic anions were found to permeate the colicin E1 channel. Inorganic sulfate was able to permeate the channel only when the pH was 4 or less, conditions under which the colicin E1 protein is predominantly in an anion-preferring conformational state. The less selective state(s) of the colicin E1 channel, observed when the pH was 5 or greater, was not permeable to inorganic sulfate. The sulfate salt of the impermeant cation Bis-T6 (N,N,N,N-tetramethyl-1,6-hexanediamine) had no effect on the single channel conductance of colicin E1 channels exposed to solutions containing 1 m NaCl at pH 5. The complete lack of blocking activity by either of these two impermeant ions indicates that both are excluded from the channel lumen. These results are consistent with our hypothesis that there is but a single location in the lumen of the colicin E1 channel where positively charged groups can be effectively hydrated. This site may coincide with the location of the energetic barrier which impedes the movement of anions.The authors wish to thank Dr. F.S. Cohen for making available unpublished data and for helpful comments. This work was supported by National Institutes of Health grant GM 37396 and by the Howard Hughes Medical Institute Undergraduate Biological Sciences Education Initiative (E.R.K.)  相似文献   

4.
The specific binding of 125 Iodine labelled colicin Ia and Ib to Escherichia coli cell envelopes and partially purified cell walls is demonstrated. Neither partially purified cytoplasmic membranes isolated from a wild type sensitive strain nor envelopes or cell walls prepared from an E. coli mutant known to be defective in the colicin I receptor could bind the colicins. Competition studies suggest that colicins Ia and Ib have a common bacterial receptor which resides in the bacterial cell wall.  相似文献   

5.
Dynamic properties of the colicin E1 ion channel   总被引:1,自引:0,他引:1  
Abstract The mechanism of channel formation and action of channel-forming colicins is a paradigm for the study of dynamic aspects of membrane-protein interactions. The following experimental results concerning interaction of the colicin E1 channel domain with target membranes, in vitro and in vivo, are discussed: (1) the nature of the translocation-competent state of the channel-forming domain; (2) unfolding of the colicin channel peptide during in vitro binding and anchoring of the channel to liposome membranes at acidic pH; (3) reversal of channel peptide binding to liposomes by an alkaline-directed pH shift; (4) voltage-driven translocation and gating of the ion channel, discussed in the context of a four-helix model for a monomeric channel; (5) rescue of colicin-treated cells by high levels of external K+; (6) trypsin rescue of cells depolarized by the colicin ion channel; and (7) interaction of the channel domain with its immunity protein.  相似文献   

6.
Channels formed by colicin E1 in planar lipid bilayers have large diameters and conduct both cations and anions. The rates at which ions are transported, however, are relatively slow, and the relative anion-to-cation selectivity is modulated over a wide range by the pH of the bathing solutions. We have examined the permeability of these channels to cationic probes having a variety of sizes, shapes, and charge distributions. All of the monovalent probes were found to be permeant, establishing a minimum diameter at the narrowest part of the pore of approximately 9 A. In contrast to this behavior, all of the polyvalent organic cations were shown to be impermeant. This simple exclusionary rule is interpreted as evidence that, when steric restrictions require partial dehydration of an ion, the structure of the channel is able to provide a substitute electrostatic environment for only one charged group at time.  相似文献   

7.
Structure-function relations of the colicin E1 ion channel were studied through the effects of mutations in the 35-residue hydrophobic region of the channel polypeptide and neighboring residues in the channel domain. Mutation of neutral residues threonine 501 and glycine 502 to a more polar or charged glutamic acid generated a protein whose channel conductance properties in each case had a decreased selectivity for anions. There was no significant effect on ion selectivity caused by mutations that changed residue charge outside the hydrophobic domain at the neighboring aspartic acid 509 or at glycine 439. The Thr501----Glu and Gly502----Glu mutants possessed lower cytotoxic and in vitro activity. An altered thermolysin cleavage pattern and a greater binding to membrane vesicles at pH greater than 4.5 of the Gly502----Glu mutant indicated greater exposure of its COOH-terminal hydrophobic domain in solution. It is concluded that the hydrophobic nature of threonine 501 and glycine 502 is important in the structure of the channel lumen and the soluble colicin. Altering proline 462, a residue conserved in five sequenced channel-forming colicins, had no significant effect on channel properties. These conclusions are discussed in the context of sequence-structure-function concepts for channel proteins.  相似文献   

8.
The functional role of ligand-gated ion channels depends critically on whether they are predominantly permeable to cations or anions. However, these, and other ion channels, are not perfectly selective, allowing some counterions to also permeate. To address the mechanisms by which such counterion permeation occurs, we measured the anion-cation permeabilities of different alkali cations, Li+ Na+, and Cs+, relative to either Cl or anions in both a wild-type glycine receptor channel (GlyR) and a mutant GlyR with a wider pore diameter. We hypothesized and showed that counterion permeation in anionic channels correlated inversely with an equivalent or effective hydrated size of the cation relative to the channel pore radius, with larger counterion permeabilities being observed in the wider pore channel. We also showed that the anion component of conductance was independent of the nature of the cation. We suggest that anions and counterion cations can permeate through the pore as neutral ion pairs, to allow the cations to overcome the large energy barriers resulting from the positively charged selectivity filter in small GlyR channels, with the permeability of such ion pairs being dependent on the effective hydrated diameter of the ion pair relative to the pore diameter.  相似文献   

9.
The protein antibiotic colicin N forms ion-permeable channels through planar lipid bilayers. Channels are induced when positive voltages higher than +60 mV are applied. Incorporated channels activate and inactivate in a voltage-dependent fashion. It is shown that colicin N undergoes a transition between an “acidic” and a “basic” channel form which are distinguishable by different voltage dependences. The single-channel conductance is non-ohmic and strongly dependent on pH, indicating that titratable groups control the passage of ions through the channel. The ion selectivity of colicin N channels is influenced by the pH and the lipid composition of the bilayer membrane. In neutral membranes the channel undergoes a transition from slightly cation-selective to slightly anion-selective when the pH is changed from 7 to 5. In lipid membranes bearing a negative surface charge the channel shows a more pronounced cation selectivity which decreases but does not reverse upon lowering the pH from 7 to 5. The high degree of similarity between the channel characteristics of colicin A and N suggests that the channels share common features in their molecular structure. Offprint requests to: F. Pattus  相似文献   

10.
A COOH-terminal tryptic fragment (Mr approximately equal to 20,000) of colicin E1 has been proposed to contain the membrane channel-forming domain of the colicin molecule. A comparison is made of the conductance properties of colicin E1 and its COOH-terminal fragment in planar bilayer membranes. The macroscopic and single channel properties of colicin E1 and its COOH-terminal tryptic fragment are very similar, if not indistinguishable, implying that the NH2-terminal, two-thirds of the colicin E1 molecule, does not significantly influence its channel properties. The channel-forming activity of both polypeptides is dependent upon the presence of a membrane potential, negative on the trans side of the membrane. The average single channel conductance of colicin E1 and the COOH-terminal fragment is 20.9 +/- 3.9 and 19.1 +/- 2.9 picosiemens, respectively. The rate at which both proteins form conducting channels increases as the pH is lowered from 7 to 5. Both molecules require negatively charged lipids for activity to be expressed, exhibit the same ion selectivity, and rectify the current to the same extent. Both polypeptides associate irreversibly with the membrane in the absence of voltage, but subsequent formation of conducting channels requires a negative membrane potential.  相似文献   

11.
Summary The two histidine residues of COOH-terminal channel-forming peptides of colicin E1 were modified by addition of a carbethoxy group through pretreatment with diethylpyrocarbonate. The consequences of the modification were examined by the action of the altered product on both phospholipid vesicles and planar membranes. At pH 6, where activity is low, histidine modification resulted in a decrease of the single channel conductance from 20 pS to approximately 9 pS and a decrease in the selectivity for sodium relative to chloride, showing that histidine modification affected the permeability properties of the channel. At pH 4, where activity is high, the single channel conductance and ion selectivity were not significantly altered by histidine modification. The histidine modification assayed at pH 4 resulted in a threefold increase in the rate of Cl efflux from asolectin vesicles, and a similar increase in conductance assayed with planar membranes. This conductance increase was inferred to arise from an increase in the fraction of bound histidine-modified colicin molecules forming channels at pH 4, since the increase in activity was not due to (i) an increase in binding of the modified peptide, (ii) a change in ion selectivity, (iii) a change of single channel conductance, or (iv) a change in the pH dependence of binding. The sole cysteine in the colicin molecule was modified in 6m urea with 5,5-dithiobis(2-nitrobenzoic acid). The activities of the colicin and its COOH-terminal tryptic peptide were found to be unaffected by cysteine modification, arguing against a role of (-SH) groups in protein insertion and/or channel formation.  相似文献   

12.
Phospholemman (PLM), a 72-amino acid membrane protein with a single transmembrane domain, forms taurine-selective ion channels in lipid bilayers. Because taurine forms zwitterions, a taurine-selective channel might have binding sites for both anions and cations. Here we show that PLM channels indeed allow fluxes of both cations and anions, making instantaneous and voltage-dependent transitions among conformations with drastically different ion selectivity characteristics. This surprising and novel ion channel behavior offers a molecular explanation for selective taurine flux across cell membranes and may explain why molecules in the phospholemman family can induce cation- or anion-selective conductances when expressed in Xenopus oocytes.  相似文献   

13.
The interaction between model lipid membranes and the binding component (Ib) of the ADP-ribosylating iota-toxin of Clostridium perfringens was studied in detail. Ib had to be activated by trypsin to result in channel formation in artificial lipid bilayers. The channels formed readily by Ib had a small single-channel conductance of about 85 picosiemens in 1 m KCl. Channel function was blocked in single-channel and multichannel experiments by the enzymatic component Ia in a pH-dependent manner. The strong Ia-mediated channel block of Ib occurred only when the pH was at least lowered to pH 5.6. The single-channel conductance showed a linear dependence on the bulk aqueous KCl concentration, which indicated that the channel properties were more general than specific. Zero current membrane potential measurements suggested the Ib channel has an approximately 6-fold higher permeability for potassium ions than for chloride. The selectivity ratio changed for salts composed of cations and anions of different mobility in the aqueous phase, again suggesting that Ib formed a water-filled general diffusion pore. Asymmetric addition of activated Ib to lipid bilayer membranes resulted in an asymmetric voltage dependence, indicating its full orientation within the membrane. Titration experiments with chloroquine and different tetraalkylammonium ions suggested that the Ib channel was blocked by these compounds but had only a weak affinity to them. In vivo measurements using Vero cells demonstrate that chloroquine and related molecules also did not efficiently block intoxication of the cells by iota-toxin. The possible role of Ib in the translocation of iota-toxin across the target cell membrane is discussed.  相似文献   

14.
Plasmid DNA of six Escherichia fergusonii colicinogenic strains (three producers of colicin E1, two of Ib and one of Ia) was isolated and the colicin-encoding regions of the corresponding Col plasmids were sequenced. Two new variants of colicin E1, one of colicin Ib, and one of colicin Ia were identified as well as new variants of the colicin E1 and colicin Ib immunity proteins and the colicin E1 lysis polypeptide. The recombinant Escherichia coli producer harboring pColE1 from E. fergusonii strain EF36 (pColE1-EF36) was found to be only partially immune to E1 colicins produced by two other E. fergusonii strains suggesting that pColE1-EF36 may represent an ancestor ColE1 plasmid.  相似文献   

15.
The X-ray structures of the channel-forming colicins Ia and N, and endoribonucleolytic colicin E3, as well as of the channel domains of colicins A and E1, and spectroscopic and calorimetric data for intact colicin E1, are discussed in the context of the mechanisms and pathways by which colicins are imported into cells. The extensive helical coiled-coil in the R domain and internal hydrophobic hairpin in the C domain are important features relevant to colicin import and channel formation. The concept of outer membrane translocation mediated by two receptors, one mainly used for initial binding and second for translocation, such as BtuB and TolC, respectively, is discussed. Helix elongation and conformational flexibility are prerequisites for import of soluble toxin-like proteins into membranes. Helix elongation contradicts suggestions that the colicin import involves a molten globule intermediate. The nature of the open-channel structure is discussed.  相似文献   

16.
The X-ray structures of the channel-forming colicins Ia and N, and endoribonucleolytic colicin E3, as well as of the channel domains of colicins A and E1, and spectroscopic and calorimetric data for intact colicin E1, are discussed in the context of the mechanisms and pathways by which colicins are imported into cells. The extensive helical coiled-coil in the R domain and internal hydrophobic hairpin in the C domain are important features relevant to colicin import and channel formation. The concept of outer membrane translocation mediated by two receptors, one mainly used for initial binding and second for translocation, such as BtuB and TolC, respectively, is discussed. Helix elongation and conformational flexibility are prerequisites for import of soluble toxin-like proteins into membranes. Helix elongation contradicts suggestions that the colicin import involves a molten globule intermediate. The nature of the open-channel structure is discussed.  相似文献   

17.
Structure and dynamics of the colicin E1 channel   总被引:13,自引:0,他引:13  
The toxin-like and bactericidal colicin E1 molecule is of interest for problems of toxin action, polypeptide translocation across membranes, voltage-gated channels, and receptor function. Colicin E1 binds to a receptor in the outer membrane and is translocated across the cell envelope to the inner membrane. Import of the colicin channel-forming domain into the inner membrane involves a translocation-competent intermediate state and a membrane potential-dependent movement of one third to one half of the channel peptide into the membrane bilayer. The voltage-gated channel has a conductance sufficiently large to depolarize the Escherichia coli cytoplasmic membrane. Amino acid residues that affect the channel ion selectivity have been identified by site-directed mutagenesis. The colicin E1 channel is one of a few membrane proteins whose secondary structures in the membrane, predominantly alpha-helix, have been determined by physico-chemical techniques. Hypothesis for the identity of the trans-membrane helices, and the mechanism of binding to the membrane, are influenced by the solved crystal structure of the soluble colicin A channel peptide. The protective action of immunity protein is a unique aspect of the colicin problem, and information has been obtained, by genetic techniques, about the probable membrane topography of the imm gene product.  相似文献   

18.
Ion selectivity of gram-negative bacterial porins.   总被引:43,自引:15,他引:28       下载免费PDF全文
Twelve different porins from the gram-negative bacteria Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, and Yersinia pestis were reconstituted into lipid bilayer membranes. Most of the porins, except outer membrane protein P, formed large, water-filled, ion-permeable channels with a single-channel conductance between 1.5 and 6 nS in 1 M KCl. The ions used for probing the pore structure had the same relative mobilities while moving through the porin pore as they did while moving in free solution. Thus the single-channel conductances of the individual porins could be used to estimate the effective channel diameters of these porins, yielding values ranging from 1.0 to 2.0 nm. Zero-current potential measurements in the presence of salt gradients across lipid bilayer membranes containing individual porins gave results that were consistent with the conclusions drawn from the single-channel experiments. For all porins except protein P, the channels exhibited a greater cation selectivity for less mobile anions and a greater anion selectivity for less mobile cations, which again indicated that the ions were moving inside the pores in a fashion similar to their movement in the aqueous phase. Three porins, PhoE and NmpC of E. coli and protein P of P. aeruginosa, formed anion-selective pores. PhoE and NmpC were only weakly anion selective, and their selectivity was dependent on the mobility of the ions. In contrast, cations were unable to enter the selectivity filter of the protein P channel. This resulted in a high anion selectivity for all salts tested in this study. The other porins examined, including all of the known constitutive porins of the four gram-negative bacteria studied, were cation selective with a 3- to 40-fold preference for K+ ions over Cl- ions.  相似文献   

19.
Yao XL  Hong M 《Biochemistry》2006,45(1):289-295
Channel-forming colicins are bacterial toxins that spontaneously insert into the inner cell membrane of sensitive bacteria to form voltage-gated ion channels. It has been shown that the channel current and the conformational flexibility of colicin E1 channel domain depend on the membrane surface potential, which is regulated by the anionic lipid content and the ion concentration. To better understand the dependence of colicin structure and dynamics on the membrane surface potential, we have used solid-state NMR to investigate the topology and segmental motion of the closed state of colicin Ia channel-forming domain in membranes of different anionic lipid contents and ion concentrations. Colicin Ia channel domain was reconstituted into membranes with different POPG and KCl concentrations. 1H spin diffusion experiments indicate that the protein contains a small domain that inserts into the hydrophobic center of the 70% anionic membrane, similar to when it binds to the 25% anionic membrane. Measurements of C-H and N-H dipolar couplings indicate that, on the sub-microsecond time scale, the protein has the least segmental mobility under the high-salt and low-anionic lipid condition, which has the most physiological membrane surface potential. Measurement of millisecond time scale motions yielded similar results. These suggest that optimal channel activity requires the protein to have sufficient segmental rigidity so that entire helices can undergo cooperative conformational motions that are required for translocating the channel-forming helices across the lipid bilayer upon voltage activation.  相似文献   

20.
The interaction of colicins with target cells is a paradigm for protein import. To enter cells, bactericidal colicins parasitize Escherichia coli outer membrane receptors whose physiological purpose is the import of essential metabolites. Colicins E1 and E3 initially bind to the BtuB receptor, whose beta-barrel pore is occluded by an N-terminal globular "plug". The x-ray structure of a complex of BtuB with the coiled-coil BtuB-binding domain of colicin E3 did not reveal displacement of the BtuB plug that would allow passage of the colicin (Kurisu, G., S. D. Zakharov, M. V. Zhalnina, S. Bano, V. Y. Eroukova, T. I. Rokitskaya, Y. N. Antonenko, M. C. Wiener, and W. A. Cramer. 2003. Nat. Struct. Biol. 10:948-954). This correlates with the inability of BtuB to form ion channels in planar bilayers, shown in this work, suggesting that an additional outer membrane protein(s) is required for colicin import across the outer membrane. The identity and interaction properties of this OMP were analyzed in planar bilayer experiments.OmpF and TolC channels in planar bilayers were occluded by colicins E3 and E1, respectively, from the trans-side of the membrane. Occlusion was dependent upon a cis-negative transmembrane potential. A positive potential reversibly opened OmpF and TolC channels. Colicin N, which uses only OmpF for entry, occludes OmpF in planar bilayers with the same orientation constraints as colicins E1 and E3. The OmpF recognition sites of colicins E3 and N, and the TolC recognition site of colicin E1, were found to reside in the N-terminal translocation domains. These data are considered in the context of a two-receptor translocon model for colicin entry into cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号