首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytochemical localization of ATPase in differentiating and mature phloem cells of Pisum sativum L. has been studied using a lead precipitation technique. Phloem transfer cells at early stages of differentiation exhibit strong enzyme activity in the endoplasmic reticulum (ER) and some reaction product is deposited on the vacuolar and plasma membranes. As the phloem transfer cells mature and develop their characteristic wall structures, strong enzyme activity can be observed in association with the plasma membranes and nuclear envelopes. Mature phloem transfer cells with elaborate cell-wall ingrowths show ATPase activity evenly distributed on plasma-membrane surfaces. Differentiating sieve elements show little or no enzyme activity. When sieve elements are fully mature they have reaction product in the parietal and stacked cisternae of the ER. There is no ATPase activity associated with P-protein at any stage of sieve-element differentiation or with the sieve-element plasma membranes. It is suggested that the intensive ATPase activity on the plasma membranes of the transfer cells is evidence for a transport system involved in the active movement of photosynthetic products through these cells.Key to labeling in the figures ER endoplasmic reticulum - P parenchyma cell - PP P-protein - SE sieve element - SPP sieve-plate pore - TC transfer cell  相似文献   

2.
During the differentiation of phloem sieve elements, the endoplasmic reticulum undergoes unique modifications to form the sieve element reticulum (SER) which persists in mature, functioning sieve tubes. Cisternae of the SER lack ribosomes and are restricted to the periphery of the sieve element at late stages of development. Some of the SER is seen as single cisternae that are in close contact with the sieve element plasma membrane. Thin sections and freeze-fracture images of sieve elements formed in tissue cultures demonstrate that the SER consists of both single cisternae and regions of stacked cisternae at some stages of maturity. The unstacked regions of the SER are continuous with the cisternae of the stacked regions. In freeze-fracture images the single cisternae adjacent to the plasma membrane are seen to be fenestrated and the openings allow continuity between the plasma membrane and the cell lumen. It is concluded that the interface between the SER and the plasma membrane of the sieve element serves to allow membrane functions such as proton efflux, proton-sucrose cotransport and compensating movements of ions to occur in a microenvironment that is separated from the moving translocation stream in the sieve element lumen. Passage of water and translocated solutes from the plasma membrane or the SER/PM interface to the interior of the cell is enhanced by the openings in the fenestrated regions of the SER. It is suggested tha the SER may also play a role in channeling ATP from mitochondria associated with the SER to the proton-pumping ATPase in the plasma membrane and that the SER may function in the uptake and release of potassium ions in the sieve element.  相似文献   

3.
Summary The distribution of adenosine triphosphatase (ATPase) activity in the phloem of petioles and minor veins of Cucurbita maxima has been studied using a lead phosphate precipitation procedure. ATPase activity was localized in sieve elements, companion cells and parenchyma cells. Activity was found at the cell surfaces, associated with the dispersed P-protein of mature sieve elements, in mitochondria, sieve-element reticulum, and at specific regions of the cell walls. It is suggested that the ATPase at the phloem cell surfaces may function in intercellular transport of assimilates or ions, and that the ATPase activity associated with the P-protein may function in the translocation process or in callose deposition.  相似文献   

4.
Summary A biochemical and cytochemical study has been made of the distribution of -glycerophosphatase (EC 3.1.3.2) activity in mature and differentiating phloem cells of Nicotiana tabacum L. and the pH dependence and kinetics of -glycerophosphate hydrolysis of homogenates of fresh leaf midveins and midveins fixed in formaldehyde-gluteraldehyde. -glycerophosphatase showed two peaks of activity at pH 5.5 and 6.2. Enzyme saturation kinetics were exhibited by both fresh and fixed tissue homogenates. At a substrate concentration of 2 mM, 65% of the enzyme activity survived fixation. Specimens for cytochemical localization were incubated with 2 mM -glycerophosphate at pH 5.5 and 6.2. Specimens showed consistent patterns of reaction product deposition. Little or no reaction product was deposited in controls incubated without substrate or with substrate plus 0.01 M fluoride. -glycerophosphatase activity in the phloem and xylem is considerably higher than in surrounding tissue. Dense localization of reaction product was demonstrated on the vacuolar membranes, the inner membranes of mitochondria, and the dictysomes of phloem parenchyma and companion cells. The plasma membrane and endoplasmic reticulum cisternae of these cells were usually free of reaction products. Enzyme activity in mature sieve elements was associated with the parietal and stacked systems of endoplasmic reticulum and with the P-protein. There was inconsistency of staining of P-protein in mature sieve elements although the association of reaction products with the P-protein appeared to show a correlation with maturity and dispersal. The P-protein bodies of differentiating sieve elements showed no reaction product deposition. The distribution of -glycerophosphatase activity has been compared with that previously recorded for ATPase activity in the phloem of Nicotiana tabacum.  相似文献   

5.
Summary Standard lead precipitation procedures have been used to examine the localization of ATPase activity in phloem tissues ofRicinus communis. Reaction product was localized on the plasma membrane of the companion cells associated with sieve elements and of parenchyma cells in phloem tissues from the leaf, petiole, stem and root. ATPase activity was also present on the plasma membrane and dispersed P-protein of sieve elements in petiole, stem and root tissue, but was absent from the plasma membrane of these cells in the leaf minor veins. Substitution of-glycerophosphate for ATP produced no change in the localization of reaction product in leaf tissue. These findings are discussed in relation to current theories on the mechanism of sugar transport and phloem loading.  相似文献   

6.
Functional sieve elements are present year-round in the secondary phloem of the trunk of Acer negundo L., the box elder tree. Judging from numerous collections made between May, 1962, and May, 1964, the seasonal cycle of phloem development is as follows: cambial activity and new phloem differentiation begin in late March or early April; xylem differentiation begins about a month later and is completed in most trees in late August. At the time of cessation of cambial activity most of the relatively wide sieve elements of the current season's increment are mature. However, numerous groups of narrow, immature sieve elements and companion cells located on the outer margin of the cambial zone do not reach maturity until fall and winter. By the time of cambial reactivation in spring, most, if not all, of these narrow elements are mature. Some of the sieve elements which reach maturity either shortly after cessation of cambial activity or during dormancy become non-functional within 6 weeks after resumption of cambial activity in spring, while others remain functional until mid-August. For the phloem increment of a given year, cessation of function begins in September with the accumulation of definitive callose on the sieve plates of the first-formed sieve elements and spreads to all but the last-formed ones by the end of December.  相似文献   

7.
In minor veins of leaves of Beta vulgaris L. (sugar beet) yellows virus particles were found both in parenchyma cells and in mature sieve elements. In parenchyma cells the particles were usually confined to the cytoplasm, that is, they were absent from the vacuoles. In the sieve elements, which at maturity have no vacuoles, the particles were scattered throughout the cell. In dense aggregations the particles tended to assume an orderly arrangement in both parenchyma cells and sieve elements. Most of the sieve elements containing virus particles had mitochondria, plastids, endoplasmic reticulum, and plasma membrane normal for mature sieve elements. Some sieve elements, however, showed evidence of degeneration. Virus particles were present also in the pores of the sieve plates, the plasmodesmata connecting the sieve elements with parenchyma cells, and the plasmodesmata between parenchyma cells. The distribution of the virus particles in the phloem of Beta is compatible with the concept that plant viruses move through the phloem in the sieve tubes and that this movement is a passive transport by mass flow. The observations also indicate that the beet yellows virus moves from cell to cell and in the sieve tube in the form of complete particles, and that this movement may occur through sieve-plate pores in the sieve tube and through plasmodesmata elsewhere.  相似文献   

8.
In Ipomoea hederifolia Linn., stems increase in thickness by forming successive rings of cambia. With the increase in stem diameter, the first ring of cambium also gives rise to thin-walled parenchymatous islands along with thick-walled xylem derivatives to its inner side. The size of these islands increases (both radially and tangentially) gradually with the increase in stem diameter. In pencil-thick stems, that is, before the differentiation of a second ring of cambium, some of the parenchyma cells within these islands differentiate into interxylary phloem. Although all successive cambia forms secondary phloem continuously, simultaneous development of interxylary phloem was observed in the innermost successive ring of xylem. In the mature stems, thick-walled parenchyma cells formed at the beginning of secondary growth underwent dedifferentiation and led to the formation of phloem derivatives. Structurally, sieve tube elements showed both simple sieve plates on transverse to slightly oblique end walls and compound sieve plates on the oblique end walls with poorly developed lateral sieve areas. Isolated or groups of two to three sieve elements were noticed in the rays of secondary phloem. They possessed simple sieve plates with distinct companion cells at their corners. The length of these elements was more or less similar to that of ray parenchyma cells but their diameter was slightly less. Similarly, in the secondary xylem, perforated ray cells were noticed in the innermost xylem ring. They were larger than the adjacent ray cells and possessed oval to circular simple perforation plates. The structures of interxylary phloem, perforated ray cells, and ray sieve elements are described in detail.  相似文献   

9.
Protophloem sieve element differentiation in the minor veins of the maize ( Zea mays L. ) leaves was first evidenced as an increase of the wall thickness, which began in the comers of the cell and then extended to other parts of the wall, and the appearance of long rough endoplasmic reticulum cistemae distributed throughout the cytoplasm, and then the presence of characteristic crystalloid inclusions within the plastids. As differentiation progressed, long cisternae of rough endoplasmic reticulum appeared to transform into shorter forms and eventually aggregated into small stacks, losing their ribosomes during the process. The nuclei degenerated, although frequently persisted until very late in differentiation the stages of maturation, as darkly stained amorphous aggregates surrounded by double nuclear envelope or only inner membrane of nuclear envelope. Subsequently, the nuclear envelope collapsed and became discontinuous. At the beginning of nuclear degeneration the perinuclear spaces were partly dilated and sometimes the outer nuclear envelope in the dilated portions then ruptured, and was accompanied by the disappearance of the cytoplasmic portion near it. During the peried of nuclear degeneration, in addition to the endoplasmic reticulum, plastids and mitochondria underwent structural modification, while components such as ribosomes, cytoplasmic ground substances, vacuoles and dictyosomes disintegrated and disappeared. At maturity, the surviving protoplasmic components, including plasmalemma, mitochondria, small stacked smooth endoplasmic reticulum and P-type plastids with crystalloids, became parietal in position. As differentiation of adjacent metaphloem sieve elements proceeded, the protoplasmic components of the mature protophloem sieve elements progresively degenerated and finally obliterated.  相似文献   

10.
11.
Evert , R. F. (U. Wisconsin, Madison.) The cambium and seasonal development of the phloem in Pyrus malus. Amer. Jour. Bot. 50(2): 149–159. Illus. 1963.—The cambium in apple consists of several layers of cells at all times, and practically all cambial cells divide periclinally one or more times before undergoing differentiation. The cambial initials do not seem to be in a uniform, uniseriate layer. Judged by collections made during 2 seasons (August, 1958–October, 1960), the seasonal cycle of phloem development is as follows. Early in April, cells in the outer margin of the cambial zone begin to differentiate into sieve elements. At approximately the same time, activity (division) commences throughout the cambial zone. By the end of July or early August, sieve-element differentiation is completed. Cessation of function begins in either late September or in October with the formation of definitive callose on the sieve areas of sieve elements in the outer margin of the functional phloem. By late November, all sieve elements are devoid of contents and most of their companion cells collapsed. Phloem differentiation precedes xylem differentiation by approximately a month and a half; xylem and phloem differentiation cease almost simultaneously; and fiber-sclereid development is coincident with the period of maximal xylem differentiation.  相似文献   

12.
Seasonal development of phloem in scots pine stems   总被引:2,自引:0,他引:2  
The formation of phloem was studied for two years in stems of 50 to 60 year old trees of Scots pine (Pinus sylvestris L.) growing in nature. The development of phloem of the current year begins 10 to 20 days before the xylem formation and is completed with the termination of shoot growth in the end of June. Observations over the seasonal activity of cambium producing sieve cells of phloem and duration of their differentiation as compared to the xylem derivatives of cambium have shown that the maxima of formation of phloem and xylem cells could coincide or not coincide by season, while the activities of their differentiation were always in antiphase. The sieve cells of early phloem were separated from those of late phloem by a layer of tannin-containing cells, which are formed simultaneously with the formation of late xylem cells by the cambium. Seasonal dynamics of accumulation of starch grain in structural elements of the phloem is related to the xylem development. The content of metabolites in differentiating and mature phloem elements, in the cambium zone, and in the xylem cells growing in the radial direction depended on cell specificity, stage of their development, and type of forming wood, early or late, which differ in the cell wall parameters and, hence, requirement of assimilates. Significant differences were described between the content of low molecular weigh carbohydrates, amino acids, organic acids, and phenol compounds using two methods of calculation: per dry weight and per cell.  相似文献   

13.
甘蔗叶不同部位ATP酶活性细胞化学定位   总被引:5,自引:0,他引:5  
甘蔗叶片,叶鞘和肥厚带韧皮部 ATP 酶活性定位于筛管、伴胞的质膜、内质网和某些伴胞细胞基质、小囊泡和发育成熟的液泡上;叶片韧皮部薄壁细胞、厚壁细胞和厚壁通道细胞质膜及小囊泡中亦显示有 ATP 水解产物;维管束鞘细咆与厚壁细胞或厚壁通道细胞所构成的细胞间隙上也存在有 ATP 酶活性反应产物沉淀。甘蔗叶片大、中、小三种维管束,从小维管束到大维管束,面向细胞间隙的细胞表面上的 ATP 酶活性逐渐增强,而维管束鞘细胞质膜上的 ATP 酶活性则趋于减弱;同一维管束内则以韧皮部细胞的 ATP 酶活性最强。维管束鞘细胞与叶肉细胞之间存在很多的胞间连丝,并表现出高的 ATP 酶活性。讨论了 ATP 酶活性的分布状态与叶肉细胞的光合产物向韧皮部运输的关系。  相似文献   

14.
A light and electron microscope investigation was conducted on phloem in the aerial stem of Epifagus virginiana (L.) Bart. Tissue was processed at field collection sites in an effort to overcome problems resulting from manipulation. At variance with earlier accounts, Epifagus phloem consists of sieve elements, companion cells, phloem parenchyma cells, and primary phloem fibers. The sieve elements possess simple sieve plates and the phloem is arranged in a collateral type of vascular bundle. In addition, this constitutes the first study on phloem ultrastructure in the aerial stems of a holoparasitic dicotyledon, an entire plant which could be viewed as an “ideal sink.” Epifagus phloem possesses unoccluded sieve plate pores in mature sieve elements and a total lack of P-protein in sieve elements at all stages of development. Mature sieve elements lack nuclei. Plastids were rarely observed in mature sieve elements. Vacuoles with intact tonoplasts were encountered in some mature sieve elements. Otherwise, the ultrastructural features of sieve elements appear to differ little from those described by investigators of non-parasitic species.  相似文献   

15.
Abstract

Researches on ultrastructure of Avena coleoptile. 3. The sieve elements. — A study on the ultrastructural organization of the mature sieve elements of Avena coleoptile has been carried out. Data suggest that functional phloem tubes are alive and remain alive until they are working. Judging on morphological basis, the metabolic activity of sieve elements should be of peculiar type and low in comparison to that of the companion cells. In fact the cytoplasm is located in a narrow parietal strand, mitochondria, Golgi apparatus and endoplasmic reticulum are present, but they appear very modified; plastids and nucleus are absent. The cytoplasm is bounded externally by a normal plasmalemma, whilst the vacuole has no visible limits: a tonoplast is, therefore not identifiable.

The strands connecting the superimposed sieve elements with one another through the sieve plate result to be made by a double membrane system very similar to the endoplasmic reticulum, which we believe to realize cytoplasmic continuity between phloem tubes.

The data reported are more favorable to the existence in the sieve tubes of an active mechanism of translocation of organic solutes than a passive mass-flow.

The collaboration of companion cells in the translocation mechanism has been discussed.  相似文献   

16.
F. B. P. Wooding 《Planta》1966,69(3):230-243
Summary The fine structure found in the developing and mature secondary phloem of Pinus pinea is described. No longitudinal system of conduits in the sieve elements has been found at any stage in their differentiation. The endoplasmic reticulum undergoes a characteristic series of changes and possible functions are considered. The nature of the sieve connections and other specialised pores are discussed.  相似文献   

17.
Sieve cell differentiation in the primary phloem of Ephedra viridis is first indicated by an increase in thickness of the wall, which begins in the corners of the cell, and next by the proliferation of smooth tubular endoplasmic reticulum (ER). As differentiation proceeds, cisternae of rough ER form stacks along the wall, losing their ribosomes in the process. Concomitantly, all of the mitochondria, plastids, and ER become parietal in distribution, and the vacuoles collapse. Nuclear degeneration is pycnotic and accompanied by the formation of tubular invaginations of the nuclear envelope into the peripheral chromatin. At maturity, an anastomosing network of smooth ER borders the plasmalemma, interconnecting aggregates of smooth tubular ER located primarily opposite the sieve areas. In addition to ER, the mature sieve cell contains mitochondria, plastids, and remnants of the degenerate nucleus, all of which are parietal in distribution. P-protein is lacking at all stages of sieve cell development. Sieve pore and compound median cavity development is similar to that reported for the sieve cells of conifers. Albuminous cells are associated with the sieve cells of the metaphloem throughout the shoot but with sieve cells of the protophloem only in the node. Among their cytoplasmic components are broad bundles of microfilaments spatially associated with a complex system of rough and smooth ER.  相似文献   

18.
Roni Aloni 《Planta》1980,150(3):255-263
The differentiation of sieve and tracheary elements was studied in callus culture of Daucus carota L., Syringa vulgaris L., Glycine max (L.) Merr., Helianthus annuus L., Hibiscus cannabinus L. and Pisum sativum L. By the lacmoid clearing technique it was found that development of the phloem commenced before that of the xylem. In not one of the calluses was differentiation of tracheary elements observed in the absence of sieve elements. The influence of indole-3-acetic acid (IAA) and sucrose was evaluated quantitatively in callus of Syringa, Daucus and Glycine. Low IAA levels resulted in the differentiation of sieve elements with no tracheary cells. High levels resulted in that of both phloem and xylem. IAA thus controlled the number of sieve and tracheary elements, increase in auxin concentration boosting the number of both cell types. Changes in sucrose concentration, while the IAA concentration was kept constant, did not have a specific effect on either sieve element differentiation, or on the ratio between phloem and xylem. Sucrose did, however, affect the quantity of callose deposited on the sieve plates, because increase in the sucrose concentration resulted in an increase in the amount of callose. It is proposed that phloem is formed in response to auxin, while xylem is formed in response to auxin together with some added factor which reaches it from the phloem.  相似文献   

19.
The seasonal development of phloem in the stems of Siberian larch (Larix sibirica Ldb.) was studied over two seasons on 50–60-year-old trees growing in a natural stand in the Siberian forest-steppe zone. Trees at the age of 20–25 years were used to study metabolites in differentiating and mature phloem elements, cambial zone, and radially growing xylem cells in the periods of early and late wood formation. The development of the current-year phloem in the stems of 50–60-year-old trees started, depending on climatic conditions, in the second-third decades of May, 10–20 days before the xylem formation, and ended together with the shoot growth cessation in late July. Monitoring of the seasonal activity of cambium producing phloem sieve cells and the duration of their differentiation compared to the xylem derivatives in the cambium demonstrated that the top production of phloem and xylem cells could coincide or not coincide during the season, while their differentiation activity was always in antiphase. Sieve cells in the early phloem are separated from those in the late phloem by a layer of tannin-containing cells, which are formed in the period when late xylem formation starts. The starch content in the structural elements of phloem depends on the state of annual xylem layer development. The content of low molecular weight carbohydrates, amino acids, organic acids, and phenols in phloem cells, cambial zone, and xylem derivatives of the cambium depends on the cell type and developmental stage as well as on the type of forming wood (early or late) differing by the cell wall parameters and, hence, by the requirement for assimilates. Significant differences in the dynamics of substances per dry weight and cell were observed during cell development.  相似文献   

20.

Background  

The phloem of dicotyledonous plants contains specialized P-proteins (phloem proteins) that accumulate during sieve element differentiation and remain parietally associated with the cisternae of the endoplasmic reticulum in mature sieve elements. Wounding causes P-protein filaments to accumulate at the sieve plates and block the translocation of photosynthate. Specialized, spindle-shaped P-proteins known as forisomes that undergo reversible calcium-dependent conformational changes have evolved exclusively in the Fabaceae. Recently, the molecular characterization of three genes encoding forisome components in the model legume Medicago truncatula (MtSEO1, MtSEO2 and MtSEO3; SEO = sieve element occlusion) was reported, but little is known about the molecular characteristics of P-proteins in non-Fabaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号