首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aralkyl-CoA:glycine N-acyltransferase and the arylacetyl-CoA:amino acid of N-acyltransferase were purified from bovine liver mitochondria and their response to a variety of ions investigated. The activity of the aralkyl transferase was inhibited by divalent cations with all substrates investigated. For benzoyl-coenzyme A (CoA), K+ was a competitive inhibitor, competing for binding at the benzoyl-CoA binding site. With salicylyl-CoA, K+ did increase the dissociation constant (KD) for acyl-CoA but it was not a competitive inhibitor and in addition, K+ increased the Michaelis constant for glycine (Kglym) tenfold. The data suggest that the increase in Kglym is due to bound K+ forcing reorientation of salicylyl-CoA at the active site so that it impinges on the glycine binding site. Inorganic anions and cations did not affect the extent of product inhibition by hippuric acid with either acyl-CoA and this was because they affected the binding of acyl-CoA and hippuric acid to the same extent. Ions did, however, greatly reduce the extent of product inhibition by CoA. This is critical because under approximate in vivo conditions (2.5 mM CoA), the salt-free enzyme would be almost completely inhibited by CoA. The arylacetyl transferase was activated by inorganic ions when assayed at saturating substrate concentrations. However, at physiologic concentrations of glycine certain salts were modestly inhibitory. The inhibitory effect of KCl was characterized by a large decrease in the affinity of the enzyme for phenylacetyl-CoA, suggesting that the arylacetyl-CoA region of the active site contained an inhibitory ion binding site. At low (physiologic) concentrations of substrate, the arylacetyl transferase was extensively inhibited by CoA and this inhibition was greatly reduced by ions. The 3'-phosphate group on CoA was found to be important for binding to the salt-free enzyme but in the presence of ions its importance was diminished. In the absence of inorganic ions the affinity of the enzyme for phenylacetyl-CoA and naphthylacetyl-CoA was so high that it could not be measured. In the presence of KCl the KD values for phenylacetyl-CoA and naphthylacetyl-CoA were similar, but the Km for glycine was extremely high for 1-naphthylacetyl-CoA conjugation, which accounts for its slow rate of metabolism. Conjugation with glutamine had a high Michaelis constant for glutamine (KGlum) and a low maximum velocity (Vmax) which accounts for the absence of glutamine conjugation in vivo.  相似文献   

2.
An in vitro study of bile acid-CoA:amino acid N-acyltransferase activity of rat liver was undertaken in order to determine whether separate amino acid-specific enzymes catalyzed the formation of glycine and taurine conjugates of bile acids as postulated by others. Polyacrylamide gel electrophoresis of 200-fold purified enzyme localized the glycine- and taurine-dependent activities to a single band. Both activities were optimal at pH 7.8 and showed similar loss of activity at pH 6.0, pH 9.0, in the presence of 5,5'-dithiobis(2-nitrobenzoic acid), and at temperatures exceeding 50 degrees. With the purified fraction, Km for glycine was 31 mM and Km for taurine was 0.8 mM. Km for several bile acid-CoA substrates was approximately 20 micron and independent of the amino acid acceptor. Only amino acids with terminal alpha- or beta-amino groups were active as acyl acceptors. Acyl donors were limited to bile acid-CoA derivatives. The data support the conclusion that the rat has a single bile acid-CoA:amino acid N-acyltransferase. The substrate kinetics are consistent with previous observations that taurine conjugates predominate in rat bile at normal hepatocellular concentrations of glycine and taurine.  相似文献   

3.
A new enzyme, phenylacetyl-CoA ligase (AMP-forming) (PA-CoA ligase, EC 6.2.1-) involved in the catabolism of phenylacetic acid (PAA) in Pseudomonas putida is described and characterized. PA-CoA ligase was specifically induced by PAA when P. putida was grown in a chemically defined medium in which phenylacetic acid was the sole carbon source. Hydroxyl, methyl-phenylacetyl derivatives, and other PAA close structural molecules did not induce the synthesis of this enzyme and neither did acetic, butyric, succinic, nor fatty acids (greater than C5 atoms carbon length). PA-CoA ligase requires ATP, CoA, PAA, and MgCl2 for its activity. The maximal rate of catalysis was achieved in 50 mM HCl/Tris buffer, pH 8.2, at 30 degrees C and under these conditions, the Km calculated for ATP, CoA, and PAA were 9.7, 1.0, and 16.5 mM, respectively. The enzyme is inhibited by some divalent cations (Cu2+, Zn2+, and Hg2+) and by the sulfhydryl reagents N-ethylmaleimide, 5,5'-dithiobis(2-nitrobenzoic acid), and p-chloromercuribenzoate. PA-CoA ligase was purified to homogeneity (513-fold). It runs as a single polypeptide in 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and has a molecular mass of 48 +/- 1 kDa. PA-CoA ligase does not use as substrate either 3-hydroxyphenylacetic, 4-hydroxyphenylacetic, or 3,4-dihydroxyphenylacetic acids and shows a substrate specificity different from other acyl-CoA-activating enzymes. The enzyme is detected in P. putida from the early logarithmic phase of growth and is repressed by glucose, suggesting that PA-CoA ligase is a specific enzyme involved in the utilization of PAA as energy source.  相似文献   

4.
We have developed a sensitive radiochemical assay of glycine N-acyltransferase activity, using phenylacetyl-CoA as the acyl donor and glycine as the acceptor. This assay measures formation of the product, phenylacetylglycine, instead of disappearance of the substrate, phenylacetyl-CoA, as did earlier assays. The subcellular location and some properties of the conjugating activity were determined in liver and kidney of the rabbit and the rat. Rabbit lung and intestine were also tested for activity.  相似文献   

5.
Rabbit liver arylsulfatase A (aryl-sulfate sulfhydrolase, EC 3.1.6.1) monomers of 130 kDa contain two free sulfhydryl groups as determined by spectrophotometric titration using 5,5'-dithiobis(2-nitrobenzoate) and by labeling with the fluorescent probe 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid. Fluorescence quenching data indicate that the reactive sulfhydryl is present in proximity to one or more tryptophan residues. Chemical modification of the sulfhydryl groups does not alter the distinctive pH-dependent aggregation property of the arylsulfatase A. The free sulfhydryls of the enzyme react with numerous sulfhydryl reagents. Based on the reactions of iodoacetic acid, methyl methanethiosulfonate, 5,5'-dithiobis(2-nitrobenzoate) and 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid with the sulfhydryl groups of arylsulfatase A, it is concluded that free sulfhydryls are not essential for the enzyme activity. In contrast, the observed inactivation of the enzyme by p-hydroxymercuribenzoate or p-hydroxymercuriphenylsulfonate is probably due to a modification of a histidine residue, consistent with previous reports that histidine is near the active site of arylsulfatase A. p-Hydroxymercuribenzoate and p-hydroxymercuriphenylsulfonate are able to react both with cysteine and with histidine residues of the protein molecule.  相似文献   

6.
The phenylalanine-sensitive isozyme of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli was inactivated by the sulfhydryl modifying reagents 5,5-dithiobis-(2-nitrobenzoate), bromopyruvate, and N-ethylmaleimide and protected from inactivation by the presence of its metal activator, Mn2+, and substrate, phosphoenolpyruvate. Inactivation by 5,5-dithiobis-(2-nitrobenzoate) was correlated with modification of two of the seven cysteine sulfhydryls of the enzyme monomer. The kinetics of 5,5-dithiobis-(2-nitrobenzoate) modification were altered significantly and distinctively by both substrates (phosphoenolpyruvate and erythrose 4-phosphate), by Mn2+, and by L-phenylalanine, suggesting that ligand binding has significant effects on the conformation of the enzyme. Site-directed mutagenesis was used to create multiple substitutions at the two invariant cysteine residues of the polypeptide, Cys-61 and Cys-328. Analysis of purified mutant enzymes indicated that Cys-61 is essential for catalytic activity and for metal binding. Cys-328 was found to be nonessential for catalytic activity, although mutations at this position had significant negative effects on Vmax, KmMn, and KmPEP.  相似文献   

7.
Apparent kinetic constants (Km and Vmax values) were determined for human liver acyl-CoA: glycine acyltransferase (glycine-N-acylase) towards isobutyryl-CoA, 2-methyl butyryl-CoA, isovaleryl-CoA, butyryl-CoA, hexanoyl-CoA, octanoyl-CoA, and decanoyl-CoA. These acyl-CoA esters were selected because of their relevance to the human diseases with cellular accumulation of these esters, i.e., especially to metabolic defects in the acyl-CoA dehydrogenation steps of the branched-chain amino acids, lysine, 5-hydroxy lysine, tryptophan, and fatty acid oxidation pathways. With the acyl-CoA ester as the fixed substrate, the Km value for glycine ranged from 0.5 to 2.9 mole/liter, and with glycine as fixed substrate, the Km values for the acyl-CoA esters varied from 0.3 to 5.6 mmole/liter. It is concluded that the substrate concentration is decisive for the glycine conjugate formation and that the occurrence in urine of acylglycines reflects an intramitochondrial accumulation of the corresponding acyl-CoA ester.  相似文献   

8.
When bovine kidney mitochondria were assayed in the presence of Triton X-100, they were found to contain glycine N-acyltransferase activity toward the CoA-adducts of benzoate, butyrate, isovalerate, naphthylacetate, phenylacetate, and salicylate. Heptanoyl-CoA activity was masked by high acyl-CoA hydrolase activity. All activities found in detergent-lysed mitochondria, and also that toward heptanoyl-CoA, could be released in soluble form by repeated cycles of freeze-thawing. Activity in the particle-free lysate decreased in the order: phenylacetyl-CoA >benzoyl-CoA >salicylyl-CoA >butyryl-CoA >naphthylacetyl-CoA >heptanoyl-CoA >isovaleryl-CoA. This is quite different from liver, where the activity toward the arylacetic acids is much lower and the other activities are higher. This reflects a major difference in the relative expression of the aralkyl and arylacetyl transferases between liver and kidney. The phenylacetyl-CoA and naphthylacetyl-CoA activity purified with a single protein which is termed the arylacetyl transferase. This enzyme was similar to the hepatic arylacetyl transferase in terms of its sensitivity to sulfhydryl reagents, response to cations, and molecular weight (33,500). Activity toward benzoyl-CoA also purified as a single form which was similar to the hepatic form in its molecular weight (34,000), response to cations, and kinetic properties. Conditions leading to the inhibition of this kidney form and also the hepatic form by p-mercuribenzoate are described.  相似文献   

9.
The acyl-CoA:amino acid N-acyl-transferases were partially purified from human liver mitochondria. The aralkyl transferase (ArAlk) had glycine conjugating activity toward the following compounds: benzoyl-CoA > butyryl-CoA, salicylyl-CoA > heptanoyl-CoA, indoleacetyl-CoA. Its kinetic properties and responses to salt were very similar to those of bovine ArAlk. Further, its molecular weight was found to be similar to that of the bovine enzyme, in contrast to reports from other laboratories. Thus, it was concluded that the human and bovine ArAlk are not significantly different. The human arylacetyl transferase (AAc) had glutamine conjugating activity toward phenylacetyl-CoA, but only 3–5% as much activity toward indoleacetyl-CoA or 1-naphtylacetyl-CoA, respectively. While this was similar to the bovine AAc, the two forms differed in several respects. First, the human liver AAc was insensitive to salts. Second, glycination of phenylacetyl-CoA by human AAc could only be detected at a high concentration of glycine (50 mM), and the rates were <2% of the rate of glutamination. In contrast, glycine conjugation predominates with bovine AAc. Kinetic analysis of the glutamination of phenylacetyl-CoA by human AAc revealed a KD for phenylacetyl-CoA of 14 μM and a Km for glutamine of 120 mM. These values indicate that the human AAc is not more efficient at glutamination than the AAc from bovine liver. An AAc was purified from rhesus monkey liver and found to have similar kinetic constants to the human form. This indicates that nonprimate enzymes do not have a defect in glutamine conjugation. Rather, it is the primate forms that are defective in that they have lost glycine conjugation, not increased the efficiency of glutamine conjugation.  相似文献   

10.
Acetyl-CoA synthetase (ACS) of Penicillium chrysogenum was purified to homogeneity (745-fold) from fungal cultures grown in a chemically defined medium containing acetate as the main carbon source. The enzyme showed maximal rate of catalysis when incubated in 50 mM HCl-Tris buffer, pH 8.0, at 37 degrees C. Under these conditions, ACS showed hyperbolic behavior against acetate, CoA, and ATP; the Km values calculated for these substrates were 6.8, 0.18, and 17 mM, respectively. ACS recognized as substrates not only acetate but also several fatty acids ranging between C2 and C8 and some aromatic molecules (phenylacetic, 2-thiopheneacetic, and 3-thiopheneacetic acids). ATP can be replaced by ADP although, in this case, a lower activity was observed (37%). ACS in inhibited by some thiol reagents (5,5'-dithiobis(nitrobenzoic acid), N-ethylmaleimide, p-chloromercuribenzoate) and divalent cations (Zn2+, Cu2+, and Hg2+), whereas it was stimulated when the reaction mixtures contained 1 mM dithiothreitol, reduced glutathione, or 2-mercaptoethanol. The calculated molecular mass of ACS was 139 +/- 1 kDa, and the native enzyme is composed of two apparent identical subunits (70 kDa) in an alpha 2 oligomeric structure. ACS activity was regulated "in vivo" by carbon catabolite inactivation when glucose was taken up by cells in which the enzyme had been previously induced. This enzyme can be coupled "in vitro" to acyl-CoA:6-aminopenicillanic acid acyltransferase from P. chrysogenum, thus allowing the reconstitution of the functional enzymatic system which catalyzes the two latter reactions responsible for the biosynthesis of different penicillins. The ACS from Aspergillus nidulans can also be coupled to 6-aminopenicillanic acid acyltransferase to synthesize penicillins. These results strongly indicate that this enzyme can catalyze the activation (to their CoA thioesters) of some of the side-chain precursors required in these two fungi for the production of several penicillins. All these data are reported here for the first time.  相似文献   

11.
Exposed thiol groups of rabbit muscle aldolase A were modified by 5,5'-dithiobis(2-nitrobenzoic) acid with concomittant loss of enzyme activity. When 5-thio-2-nitrobenzoate residues bound to enzyme SH groups were replaced by small and uncharged cyanide residues the enzyme activity was restored by more than 50%. The removal of a bulky C-terminal tyrosine residue from the active site of aldolase A resulted in enzyme which was inhibited by 5,5'-dithiobis(2-nitrobenzoic) acid only by 50% and its activity was nearly unchanged after modification of its thiol groups with cyanide. The results obtained show directly that rabbit muscle aldolase A does not possess functional cysteine residues and that the inactivation of the enzyme caused by sulfhydryl group modification reported previously can be attributed most likely to steric hindrance of a catalytic site by modifying agents.  相似文献   

12.
Human porphyria cutanea tarda (PCT) is an unusual consequence of common hepatic disorders such as alcoholic liver disease and iron overload, where hepatic iron plays a key role in the expression of the metabolic lesion, i.e., defective hepatic decarboxylation of porphyrinogens. In this investigation, kinetic studies on a partially purified rat liver uroporphyrinogen decarboxylase have been conducted under controlled conditions to determine how iron perturbs porphyrinogen decarboxylation in vitro. The enzyme, assayed strictly under anaerobic conditions in the dark, was inhibited progressively by ferrous iron. Approximately 0.45 mM ferrous ammonium sulfate was required to observe about 50% inhibition of enzyme activity measured with uroporphyrinogen I as substrate. We showed that (a) all the steps of enzymatic decarboxylation (octa-, hepta-, hexa-, and pentacarboxylic porphyrinogen of isomer I series) were inhibited by ferrous iron. The inhibition was competitive with respect to uroporphyrinogen I and III substrates; (b) the cations, e.g., Fe3+ and Mg2+, had no effect, whereas sulfhydryl group specific cations and compounds such as Hg2+, Zn2+, p-mercuribenzoate, and 5,5'-dithiobis(2-nitrobenzoate) all inhibited the enzyme; (c) the enzyme could be protected from inhibition by Fe2+ and p-mercuribenzoate by preincubation with pentacarboxylic porphyrinogen, a natural substrate and competitive inhibitor. These data suggest for the first time a direct interaction of ferrous iron with cysteinyl residue(s) located at the active site(s) of the enzyme.  相似文献   

13.
We have obtained 53 mg of 99% pure dihydroorotase from 10.9 g of frozen Escherichia coli pyrC plasmid-containing E. coli cells using a 4-step 16-fold purification procedure, a yield of 60%. We characterize the enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (a dimer of subunit molecular weight 38,300 +/- 2,900), high performance liquid chromatography gel sieving, amino acid analysis, amino terminus determination (blocked), and specific activity. The isolated enzyme contains 1 tightly bound essential zinc atom/subunit, and readily but loosely binds 2 additional Zn(II) or Co(II) ions/subunit which modulate catalytic activity; treatment of crude extracts with weak chelators suggests that the enzyme contains 3 zinc atoms/subunit in vivo. Two of the 6 thiol groups/subunit react rapidly with 5,5'-dithiobis(2-nitrobenzoate) when 1 Zn/subunit enzyme is used, but slowly when 3 Zn/subunit enzyme is used. The 2 weakly bound Zn(II) ions/subunit protect against the reversible air oxidation which lowers the specific activity of the enzyme and renders it unreactive with 5,5'-dithiobis(2-nitrobenzoate). The dilution activation observed in the presence of substrate, the dilution inactivation observed in the absence of substrate, and the transient activation by the metal chelator oxalate are interpreted as evidence for an unstable, hyperactive monomer.  相似文献   

14.
Reactions catalyzed by NAD-linked malic enzyme from Escherichia coli were investigated. In addition to L-malate oxidative decarboxylase activity (Activity 1) and oxaloacetate decarboxylase activity (Activity 2), the enzyme exhibited oxaloacetate reductase activity (Activity 3) and pyruvate reductase activity (Activity 4). Optimum pH's for Activities 3 and 4 were 4.0 and 5.0, and their specific activities were 1.7 and 0.07, respectively. Upon reaction with N-ethylmaleimide (NEM), Activity 1 decreased following pseudo-first order kinetics. Activity 2 decreased in parallel with Activity 1, while Activities 3 and 4 were about ten-fold enhanced by NEM modification. Modification of one or two sulfhydryl groups per enzyme subunit caused an alteration of the activities. Tartronate, a substrate analog, NAD+, and Mn2+ protected the enzyme against the modification. The Km values for the substrates and coenzymes were not significantly affected by NEM modification. Similarly, other sulfhydryl reagents such as p-hydroxymercuribenzoate (PMB), 5,5'-dithiobis(2-nitrobenzoate) (DTNB), and iodoacetate inhibited the decarboxylase activities and activated the reductase activities to various extents. Modification of the enzyme with PMB or DTNB was reversed by the addition of a sulfhydryl compound such as dithiothreitol or 2-mercaptoethanol. Based on the above results, the mechanism of the alteration of enzyme activities by sulfhydryl group modification is discussed.  相似文献   

15.
1. In various tissues from the monkey (Macaca fuscata), acyl-coenzyme A (CoA) hydrolase activities were found to be widely distributed within a 2-10 times range and present in liver cytosol having mol. wt of ca 60,000. 2. Acyl-CoA: amino acid N-acyltransferase activity were 4-250 times higher in liver and kidney than in other tissues, even no activity in heart, lung, and plasma. 3. The transferases abounded in liver mitochondria, being distributed evenly between the intracristate space, the inner membrane, and the matrix. 4. The partially purified transferases with benzoyl-CoA or phenylacetyl-CoA as substrates were shown to have mol. wt of ca 30,000 and reacted only with glycine or L-glutamine, respectively. 5. No amino acid tested had any effects on the enzyme as either inhibitors or activators. 6. These results suggest that the enzymes that metabolize acyl-CoA constitute an alternative pathway for the excretion of nitrogen.  相似文献   

16.
The binding site of NADPH in NADPH-adrenodoxin reductase was examined using crystalline enzyme from bovine adrenocortical mitochondria by studies on the effects of photooxidation and chemical modifications of amino acid residues in the reductase. (1) Photoxication decreased the enzymatic activity of NADPH-adrenodoxin reductase. Photooxidation of the reductase was prevented by NADP+, adrenodoxin, or reduced glutathione, but not NAD+. Photoinactivation caused loss of a histidyl residue, but not of tyrosyl, tryptophanyl, cysteinyl, or methionyl residues of the reductase. It did not affect the circular dichroism spectrum of the reductase appreciably. (2) NADPH-adrenodoxin reductase activity was inhibited by diethyl pyrocarbonate and the inhibition was partially reversed by addition of hydroxylamine. The inhibition was prevented by NADP+, but not NAD+. (3) NADPH-adrenodoxin reductase activity was inhibited by 5,5'-dithiobis(2-nitrobenzoate) and the inhibition was reversed by reduced glutathione. It was also protected by NADP+, but not NAD+. The results indicate that a histidyl residue and a cysteinyl residue of NADPH-adrenodoxin reductase are essential for the binding of NADPH by the reductase.  相似文献   

17.
3-Hydroxyphenylacetate 6-hydroxylase was purified 70-fold from a Flavobacterium sp. grown upon phenylacetic acid as its sole carbon and energy source. The presence of FAD and dithiothreitol during purification is essential for high recovery of active enzyme. SDS/PAGE of purified enzyme reveals a single band with a minimum molecular mass of 63 kDa. Analytical gel-filtration, sedimentation-equilibrium and sedimentation-velocity experiments indicate that the purified enzyme exists in solution mainly as a dimer, containing 1 molecule non-covalently bound FAD/subunit. 3-Hydroxyphenylacetate 6-hydroxylase utilizes NADH and NADPH as external electron donors with similar efficiency. The enzyme shows a narrow substrate specificity. Only the primary substrate 3-hydroxyphenylacetate is hydroxylated efficiently, yielding 2,5-dihydroxyphenylacetate as a product. During turnover, the substrate analogues 3,4-dihydroxyphenylacetate and 4-hydroxyphenylacetate are partially hydroxylated, exclusively at the 6' (2') position. The physiological product 2,5-dihydroxyphenylacetate acts as an effector, strongly stimulating NAD(P)H oxidation. The activity of 3-hydroxyphenylacetate 6-hydroxylase is severely inhibited by chloride ions, competitive to the aromatic substrate. In the native state of enzyme, two sulfhydryl groups are accessible to 5,5'-dithiobis(2-nitrobenzoate). Titration with stoichiometric amounts of either 5,5'-dithiobis(2-nitrobenzoate) or mercurial reagents completely blocks enzyme activity. Inactivation by cysteine reagents is inhibited by the substrate 3-hydroxyphenylacetate. The original activity is fully restored by treatment of the modified enzyme with dithiothreitol. The N-terminal amino acid sequence of the enzyme lacks the consensus sequence GXGXXG, found at the N-termini of all flavin-dependent external monooxygenases sequenced so far. The amino acid composition of 3-hydroxyphenylacetate 6-hydroxylase is also presented.  相似文献   

18.
Tammam SD  Rochet JC  Fraser ME 《Biochemistry》2007,46(38):10852-10863
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) transfers CoA from succinyl-CoA to acetoacetate via a thioester intermediate with its active site glutamate residue, Glu 305. When CoA is linked to the enzyme, a cysteine residue can now be rapidly modified by 5,5'-dithiobis(2-nitrobenzoic acid), reflecting a conformational change of SCOT upon formation of the thioester. Since either Cys 28 or Cys 196 could be the target, each was mutated to Ser to distinguish between them. Like wild-type SCOT, the C196S mutant protein was modified rapidly in the presence of acyl-CoA substrates. In contrast, the C28S mutant protein was modified much more slowly under identical conditions, indicating that Cys 28 is the residue exposed on binding CoA. The specific activity of the C28S mutant protein was unexpectedly lower than that of wild-type SCOT. X-ray crystallography revealed that Ser adopts a different conformation than the native Cys. A chloride ion is bound to one of four active sites in the crystal structure of the C28S mutant protein, mimicking substrate, interacting with Lys 329, Asn 51, and Asn 52. On the basis of these results and the studies of the structurally similar CoA transferase from Escherichia coli, YdiF, bound to CoA, the conformational change in SCOT was deduced to be a domain rotation of 17 degrees coupled with movement of two loops: residues 321-329 that bury Cys 28 and interact with succinate or acetoacetate and residues 374-386 that interact with CoA. Modeling this conformational change has led to the proposal of a new mechanism for catalysis by SCOT.  相似文献   

19.
The CheR methyltransferase catalyzes the transfer of methyl groups from S-adenosylmethionine to specific glutamyl residues in bacterial chemoreceptor proteins. Studies with sulfhydryl reagents such as p-chloromercuribenzoate, N-ethylmaleimide, and 5,5'-dithiobis(2-nitrobenzoate) suggest that a cysteine residue is required for enzyme activity. The nucleotide sequence of the cheR gene predicts a 288-amino acid protein with cysteine residues at positions 31 and 229. To ascertain the role of these cysteine residues in the structure and function of the enzyme, oligonucleotide-directed mutagenesis was used to change each cysteine to serine. Whereas the Cys229-Ser mutation had essentially no effect on transferase activity, the Cys31-Ser mutation caused an 80% decrease in enzyme activity. The double mutant in which both cysteines were replaced by serines also had markedly reduced transferase activity. Preincubation of the wild type or Cys229-Ser proteins with either S-adenosylmethionine or beta-mercaptoethanol protected it from inhibition by sulfhydryl reagents, whereas prior incubation with the second substrate, the Tar receptor, gave partial protection. From these studies, Cys31 appears to be necessary for enzyme activity, and it seems to be located in the vicinity of the active site.  相似文献   

20.
Phosphoenolpyruvate carboxylase [EC 4.1.1.31] from Escherichia coli W was alkylated by incubation with bromopyruvate, substrate analog, leading to irreversible inactivation. The reaction followed pseudo-first-order kinetics. Mg2+, an essential cofactor for catalysis, enhanced the inactivation, and the enhancing effect increased as the pH increased. The inactivation rate showed a tendency to saturate with increasing concentrations of bromopyruvate, indicating that an enzyme-bromopyruvate complex was formed prior to the alkylation. DL-Phospholactate, a potent competitive inhibitor with respect to phosphoenolpyruvate, protected the enzyme from inactivation in a competitive manner. Examination of the acid hydrolysate of the enzyme modified with [14C]bromopyruvate by paper chromatography showed that radioactivity was solely incorporated into carboxyhydroxyethyl cysteine. In addition, determination of sulfhydryl groups of the native and modified enzymes with 5,5'-dithiobis(2-nitrobenzoate) showed that inactivation occurred concomitant with the modification of one cysteinyl residue per subunit. The results indicate that bromopyruvate reacted with the enzyme as an active-site-directed reagent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号