首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusion of cells of the mouse myeloma line, P3/X63-Ag8 with spleen cells from AKR/J mice immunized against C3H thymocytes or from (BALB/c x BALB.K)F1 mice immunized against AKR/J thymocytes gave rise to hybrid cell lines that continuously secrete antibodies specific for the Thy-1.2 and Thy-1.1 antigens, respectively. Monoclonal antibodies from four such cell lines were analyzed in detail. All were 19S IgM, and, in the presence of complement (C), had high lytic titers on T cells of the appropriate antigenicity. Their specificity was shown by lysis of thymocytes from Thy-1 congenic mouse strains, A/J(Thy-1.2) and A. Thy 1.1. Furthermore, they lyse only 60 to 70% of lymph node cells, suggesting cytotoxicity for mature T cells and not B cells. Treatment of peripheral lymphocyte populations with monoclonal antibody plus C eliminated effector cytotoxic T lymphocytes, their precursors, and the mitogenic response to Con A, but did not affect the response to LPS. Purified, fluorescein-labeled monoclonal anti-Thy-1 antibody could be used to distinguish T and B cells. Purified antibody coupled to Sepharose 6MB was used to separate viable T and B cells. Two independently isolated anti-Thy-1.2 hybridomas are indistinguishable and bind the same determinant whereas a third is unique and may bind a separate site.  相似文献   

2.
In an attempt to further evaluate the role of Thy-1 in the antigen-independent triggering of mouse T cells, we have examined the activating properties of two Thy-1.1-specific mouse monoclonal antibodies (mAb). These reagents were established from an (A.TH X A.TL)F1 hybrid mouse (Thy-1b) immunized with IL-2 producing (BALB/c (Thy-1b) X BW5147 (Thy-1a)) T hybridoma cells. Although both mAb recognized the same Thy-1.1 determinant, one mAb of the gamma 3,kappa class (H171-146) was found to induce several T hybridoma cells to produce IL-2, and AKR thymocytes or cloned helper T cells to proliferate, whereas another mAb of the gamma 1,kappa class (H171-112) failed to do so even in the presence of phorbol myristic acetate (PMA). Increased IL-2 responses of T hybridoma cells were observed when the cell bound Thy-1.1-specific mAb were crosslinked by goat anti-mouse Ig (GaMIg) antibodies. Both a T-cell activating rat anti-Thy-1.2 mAb and the anti-Thy-1.1 mAb H171-146, although directed at distinct cell surface molecules, synergistically stimulated IL-2 production by T hybridoma cells. In addition, the mouse mAb H171-146 was found to stimulate LOU/M rat thymocytes to proliferate in the presence of exogenous IL-2. These data demonstrate that T cells can use Thy-1 as a signal-transducing molecule in both mouse and rat species, and support the notion that the activating properties of Thy-1.1-specific mAb are influenced by their heavy chain isotypes.  相似文献   

3.
Influence of antibody isotype on passive serotherapy of lymphoma   总被引:8,自引:0,他引:8  
We assessed the in vivo anti-tumor effectiveness of monoclonal antibodies of different isotypes. Starting with a hybridoma cell secreting an IgG3 anti-Thy-1.1 antibody, we isolated three variant hybridoma cell lines secreting anti-Thy-1.1 antibody of the IgG1, IgG2a, and IgG2b isotypes. Each antibody displayed identical antigen binding properties, but differed in their ability to mediate in vitro lysis of Thy-1.1+ AKR/J SL2 lymphoma cells. In assays of complement dependent cytotoxicity, the relative activity of each antibody isotype was IgG2a = IgG2b greater than IgG3 greater than IgG1. In assays of antibody-dependent cell-mediated cytotoxicity when using non-immune spleen cells as effectors, the relative activities were IgG2a greater than or equal to IgG2b greater than IgG1 greater than IgG3. Infusion of equivalent amounts of each antibody (1.5 mg) in AKR/Cum (Thy-1.2+) mice inoculated subcutaneously with 3 X 10(5) AKR/J SL2 lymphoma cells resulted in significant inhibition of tumor growth only in mice treated with IgG2a antibody. However, the antibodies were cleared at different rates, with the IgG2a antibody having the slowest clearance. When antibody doses were adjusted to achieve equivalent serum levels 24 hr after infusion, all of the antibody isotypes exhibited at least some anti-tumor activity, although IgG2a antibody was again the most effective. These studies demonstrate that the difference in anti-tumor activity between antibodies of different isotypes may result from differences both in their serum clearance rate and their ability to interact with host effector mechanisms.  相似文献   

4.
As immunization of BALB/c mice to the syngeneic P1798 lymphoma is effected by administration of iodoacetamide-modified P1798 cells, serum antibodies appear which are reactive with P1798 and normal BALB/c thymocytes, splenocytes, and peripheral blood lymphocytes. Anti-P1798 serum also cross-reacted with thymocytes from AKR, DBA/2, and C3H mice as well as the allogeneic lymphoma 6C3HED. Anti-P1798 serum was unreactive with the Thy-1 deficient L1210 lymphoma. Multiple absorptions of anti-P1798 serum with normal BALB/c thymocytes or brain or P1798 removed antibodies to P1798 and thymocytes commensurately. Normal BALB/c liver and kidney did not absorb antibody activity. Treatment of a BALB/c splenocyte suspension with anti-Thy 1.2 serum and complement removed the population of spleen cells which were capable of reaction with anti-P1798 serum. The data suggest that antibodies to P1798 and thymocytes are the same and that specificity may be directed toward a Thy-1 related structure but without distinguishing Thy-1.1 and Thy-1.2.  相似文献   

5.
A proportion of Pgp-1+ cells in the thymus have been shown to have progenitor activity. In adult AKR/Cum mice the total Pgp-1+ population in the thymus differs from that of the bulk of thymocytes and is antigenically heterogeneous when examined by flow cytometry. Pgp-1+ thymocytes are enriched for several minor cell populations compared to total thymocytes: B2A2-, interleukin-2-receptor+ (IL-2R+), and Lyt-2-, L3T4-. However, these subsets are still a minor proportion of the Pgp-1+ cells, the majority being Lyt-2+ and/or L3T4+ and B2A2+. Pgp-1+ thymocytes also differ from the bulk of thymocytes in having lower amounts of Thy-1 and in showing a higher proportion of single positive (Lyt-2+, L3T4- or Lyt-2-, L3T4+) cells. Populations of adult thymocytes that are enriched in progenitor cells can be isolated by cytotoxic depletion using either anti-Thy-1 antibody (Thy-1 depletion) or anti-Lyt-2 and anti-L3T4 antibody (Lyt-2, L3T4 depletion). Pgp-1+ cells in progenitor cell-enriched populations are also phenotypically heterogeneous. Pgp-1+ cells in both populations may be IL-2R+ or IL-2R- and B2A2+ or B2A2-. The population of Pgp-1+ cells in progenitor cell-enriched populations in the adult differs from that of the fetus at 14 days of gestation in that in the 14-day fetus, most Pgp-1+ cells are IL-2R+. By Day 15 of gestation, distinct populations of Pgp-1+, IL-2R-; Pgp-1+, IL-2R+; and Pgp-1-, IL-2R+ cells are observed. In the 15-day fetus, as in the adult, many Pgp-1+ thymocytes express low to moderate levels of Thy-1. The total percentage of Pgp-1+ cells in the thymus varies among different mouse strains, ranging from 4 to 35% in the thymus of young adult mice. Pgp 1.1 strains contain more detectably Pgp-1+ thymocytes than Pgp 1.2 strains; however, there is variability in the proportion of Pgp-1+ cells, even among Pgp 1.2 strains. In contrast to AKR/Cum mice, the Pgp-1+ thymocyte population in BALB/c mice, which contain a high proportion of Pgp-1+ thymocytes, closely resembles the total thymocyte population.  相似文献   

6.
A hybridoma producing monoclonal antibodies (McAb) NATF9.9 (F9) was obtained from fusion of murine myeloma X63 and splenocytes of AKR mice immunized with a single intravenous injection of 5 X 10(7) thymocytes of CBA mice. F9 McAb were cytotoxic for 80% thymocytes, 10% splenocytes, 20% lymph node cells, 85% cortical and 32% medullary thymocytes of CBA, C57BL/6, BALB/c, DBA/2 and SJL but not for the cells of C58 and AKR mice. F9 McAb reacted only with T cells and did not react with B cells and EL4 thymoma cells (Thy-1.2+, Lyt-1+2-3-). The proportion of F9+ cells accounts for about 40% among T lymphocytes of the lymph nodes and spleen as tested by flow-type cytometry. Lymph node cells treated with F9 McAb plus complement completely lost their reactivity with rat anti-Lyt-2 McAb and only partly (by 30%) with anti-Lyt-1 McAb. The reactivity pattern of F9 McAb attests to their specificity for Lyt-3.2 antigen.  相似文献   

7.
Mice were immunized intravenously with 4 × 107 thymocytes from Thy-1 disparate, eitherH-2-compatible orH- 2-incompatible donors. The magnitude of the anti-Thy-1.1 response was measured by determining the number of PFC in spleens of animals 6 days after immunization. Regardless of the origin of immunizing and target thymocytes, the assay employed detected exclusively PFC-producing antibodies to the Thy-1.1 antigen. In almost all instances,H-2-compatible thymocytes elicited a significantly higher response than didH-2-incompatible thymocytes, although the latter occasionally evoked a high response. TheH-2 incompatibility between donor and recipient appeared to be responsible for the differences in responsiveness of the standard inbred mice and theirH-2 mutants immunized with thymocytes compatible with standard inbred strains. The phenomenon observed appears to have several features in common with antigenic competition. We propose that the requirement forH-2 compatibility in the anti-Thy-1.1 response may be the expression of a general requirement of T cells to recognize an antigen in the context of the H-2 molecule.  相似文献   

8.
Mouse epidermal cells (EC) are composed of at least two phenotypically discrete populations of cells that in epidermal sheets have a dendritic morphology: Ia+ Langerhans cells (LC) and dendritic, bone marrow-derived, Ia- cells that express Thy-1 antigen (Thy-1+ dEC). Thy-1+ dEC lack other typical T cell markers such as L3T4, Lyt-1, and Lyt-2; however they do express Ly-5 and asialo GM1 in common with NK cells and certain other leukocytes. To investigate the functional capabilities of Thy-1+ dEC in vitro, cell suspensions prepared from trypsin-disaggregated sheets of mouse body wall epidermis were first enriched to 8 to 20% Ia+ and 20 to 40% Thy-1+ cells by centrifugation over Isolymph and then were cultured for 2 to 10 days with Concanavalin A (Con A) and/or partially purified rat IL 2. Con A-induced proliferation of EC was readily seen, with the maximal response occurring at a Con A concentration of 2.5 micrograms/ml on day 5 of culture. Con A responses were significantly enhanced by the continuous presence of 1 microgram/ml indomethacin. Responses both in the presence and absence of Con A were significantly enhanced by the addition of 5 to 10 U/ml of partially purified rat IL 2; proliferation in cultures stimulated by both Con A and IL 2 continued to increase throughout the 10-day culture period. Culture of fluorescence-activated cell sorter (FACS)-separated EC suspensions revealed that Thy-1-depleted EC and irradiated Thy-1+ EC failed to proliferate in response to Con A and IL 2, whereas unirradiated purified Thy-1+ EC gave enhanced Con A- and IL 2-induced responses compared with the unseparated population. Finally, to distinguish between the proliferation of small numbers of mature peripheral T cells and that of Thy-1+ dEC, antibody and complement-depletion studies were conducted with an unusual monoclonal anti-Thy-1 reagent, 20-10-5S, and with the anti-T cell reagents, anti-L3T4 and anti-Lyt-2. Thy-1+ dEC, but not LC, express the 20-10-5S determinant; furthermore, in CBA (Thy-1.2) mice 20-10-5S reacts with Thy-1+ dEC, thymocytes, and peripheral T cells, whereas in AKR/J (Thy-1.1) mice, it reacts only with Thy-1+ dEC and thymocytes and not with peripheral T cells. Pretreatment of AKR/J EC with 20-10-5S and complement abolished the capacity of such cells to respond to Con A and to IL 2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
We have introduced a mouse Thy-1.1 gene into the germline of Thy-1.2 mice. The introduced gene was shown to be expressed at very high levels in thymocytes when compared with the endogenous gene. Transgenic thymocytes were shown to evoke a higher than normal primary anti-Thy-1.1 antibody response in plaque-forming cell (PFC) assays. This result suggests that a direct quantitative interaction of the Thy-1 antigen activates the B cell response.  相似文献   

10.
Mouse thymocytes are known to undergo apoptosis by ligating some unique anti-Thy-1 monoclonal antibodies (mAbs), G7 and KT16. However, the precise mechanisms of Thy-1-mediated apoptosis are as yet unclear. We investigated Thy-1-mediated apoptosis using our previously generated anti-Thy-1 mAb, MCS-34, which was similar to G7 because both antibodies recognized both Thy-1.1 and Thy-1.2 and bound Thy-1A epitope. Unlike G7, MCS-34 alone could not induce apoptosis in thymocytes; however, it could induce apoptosis when it was cross-linked with second antibodies. Thus, MCS-34 could not aggregate by itself, but G7 could. In the course of investigating the apoptosis-related molecules that were involved in the thymocyte apoptosis induced by cross-linking of MCS-34 or by G7 ligation, we found that CPP32-like proteases were activated during the apoptosis. Furthermore, the expression of bcl-2 and bcl-XLproteins was decreased in these apoptosis processes. Whereas the ligation of MCS-34 alone could not generate apoptosis signals that led to the activation of CPP32-like proteases and the decrease in bcl-2 and bcl-XLexpression, the aggregation of Thy-1 glycoprotein might be crucial to signal thymocyte apoptosis. These results indicate that MCS-34 is a useful anti-Thy-1 mAb for analyzing the Thy-1-mediated signals since MCS-34 can control the level of apoptosis by using second antibodies.  相似文献   

11.
Anti-Thy-1.2 plus complement treated bone marrow cells were tested after short-term culture for their ability to lyse allogeneic target cells. Significant lytic activity was generated after 9 days, and required both CAS and splenic or PEC feeders as culture supplements. Allogeneic as well as syngeneic-specific cytotoxic cells were generated polyclonally under such conditions, and could be separated by using limiting dilution protocols. When 65 clones were tested for lytic activity toward three targets bearing H-2k, H-2d, and H-2b haplotypes, respectively, only two clones lysed all three targets; 53 clones showed specificity toward one target only. Targets low in class I H-2 expression were lysed only minimally compared with high H-2 expressors. Allogeneic-kill by C57BL/6 bone marrow cells grown on AKR feeder cells was destroyed by treating effectors with anti-Thy-1.2, but not anti-Thy-1.1, antibody plus complement, suggesting 1) a de novo generation of surface Thy-1 during culture and 2) that effectors were derived from bone marrow, but not feeder, populations. Partial inhibition of kill occurred by treatment of effectors with anti-asialo-GM1 (approximately 80%), anti-Lyt-2 (approximately 60%), or anti-Ly-5.1 (approximately 30%) antibodies plus complement; treatment of effectors with anti-L3T4 or anti-NK-1.1 antibodies plus complement had no effect. When precursor populations were treated with either anti-Thy-1.2 alone or a combination of anti-Thy-1.2 and anti-Lyt-2 antibodies plus complement, killers were easily demonstrated. However, the addition of an anti-asialo-GM1 antibody plus complement treatment before culture abolished function. The characteristics of these effectors showed a resemblance to those described previously for day 14 to 17 fetal thymocytes, designated pCTL.  相似文献   

12.
MRL/Mp-lpr/lpr (MRL/lpr) mice spontaneously develop an autoimmune disease characterized by anti-DNA antibodies, immune-complex glomerulonephritis, and massive proliferation of a distinct population of T cells. The proliferating T cells have the phenotype Thy-1.2+, T200+, Lyt-1+,2-,3-, but Thy-1.2 and Lyt-1 are expressed in abnormally low density. These cells appear to function as helper cells, and neonatal thymectomy prevents both lymphoproliferation and autoimmunity, which suggests that autoimmunity in MRL/lpr mice is secondary to T cell proliferation. We therefore attempted to reduce lymphoproliferation by treating MRL/lpr mice with a single injection of rat monoclonal antibody (MAb) to Thy-1.2 (30-H12, IgG2b). Mice were treated at 8 wk, before the onset of overt disease. We found that MRL/lpr mice were resistant to depletion of circulating T cells (CTC) by anti-Thy-1.2; 0.6 mg of antibody totally depleted CTC from normal mice, but had little or no effect on CTC in MRL/lpr mice. However, treatment with 6 mg of MAb against Thy-1.2 reduced CTC in MRL/lpr mice by over 70%. Moreover, this single treatment markedly reduced the proliferation of CTC over the ensuing 3 mo, despite clearance of the anti-Thy-1.2 from the circulation within 3 wk. Treated mice maintained better renal function than untreated controls, as assessed by levels of blood urea nitrogen (BUN), although anti-DNA antibodies were not significantly reduced. The effect of anti-Thy-1.2 was specific; treatment with rat MAb to the common leukocyte antigen T200 produced only a transient effect on circulating lymphocytes and did not reduce renal disease. The prolonged effects of a single injection of anti-Thy-1.2 suggest that the MAb produces a sustained alteration in immune regulation. The improvement in renal disease is in accord with evidence that autoimmune disease in MRL/lpr mice is T cell dependent. Monoclonal anti-lymphocyte antibodies may be useful in the treatment of autoimmunity.  相似文献   

13.
Thy-1 antigens are the only cell membrane antigens known to be able to induce primary antibody responses in vitro. We have shown that antigens from the thymocytes of mice and rats were highly immunogenic in cultures of murine spleen cells for the induction of Thy-1.1-specific plaque-forming cell responses, whereas antigens from other tissues, including brains and bone marrow, were poorly immunogenic, if at all. The thymocyte-specific Thy-1 immunogenicity was carried by disrupted cell membranes, and the specific activity for inducing responses was closely linked to Thy-1. We then tried to determine the mechanism of anti-Thy-1 antibody responses in vitro that were induced by the uniquely immunogenic thymocyte antigens. The thymocyte Thy-1 antigens behaved as T cell-independent class 2 (TI-2) antigens: they induced responses in athymic nude mice but not in CBA/N mice with a B cell defect. The apparent TI-2 responses to thymocyte Thy-1 did, however, require Thy-1+ cells in the responder, similar to anti-DNP-Ficoll responses. The full development of the anti-Thy-1 responses required the participation of splenic adherent cells (SAC). Nevertheless, the mechanism of the SAC dependency of anti-Thy-1 responses did not involve antigen presentation to lymphocytes by antigen-pulsed SAC, which contrasted with the finding that the presentation of antigen by live SAC to lymphocytes was indispensable for responses to DNP-Ficoll. The poor Thy-1 responsiveness of SAC-depleted spleen cells was fully restored by the addition of soluble factors (IL 1-like molecules) released from SAC into the culture, which did not replace the SAC-requirement of responses to DNP-Ficoll. It was concluded from these results that Thy-1 or Thy-1-linked structures on thymocyte membranes have an intrinsic activity to directly signal either TI-2 B cells or immature T cells, or both, for activation in the presence of soluble factors released from adherent accessory cells. This conclusion is discussed in relation to a hypothetical view that the thymocyte Thy-1 would physiologically mediate cell-to-cell interactions among special subsets of lymphocytes under thymic influence.  相似文献   

14.
The effect of anti-Thy-1 monoclonal antibodies on murine mixed lymphocyte reactions and concanavalin A-induced mitogenesis were investigated. It is demonstrated that rat antibodies against nonpolymorphic determinants of the murine Thy-1 antigen inhibited cell proliferation in the absence of complement. In contrast, antibodies against polymorphic determinants of Thy-1 had no effect on T cell activation. Inhibition of T cell proliferation did not depend on the isotype of the blocking antibody, because both IgM and IgG antibodies against monomorphic determinants were inhibitory, whereas IgM or IgG antibodies against allotypic determinants were inactive. In addition, the blocking activity could not be attributed to the xenogeneic (rat) origin of the antibodies to nonpolymorphic Thy-1 determinants, because rat anti-Thy-1.2 antibodies had no effect on cell activation. Thus, the efficacy of anti-Thy-1 antibodies as T cell inhibitors was determined by the antibody specificity. The suppressive mechanism of anti-Thy-1 antibodies was effective throughout the entire course of mixed lymphocyte reactions. Addition of antibodies at any time point during the first 90 hr of a 120-hr mixed lymphocyte culture resulted in significant suppression of the proliferative response. However, in some cases an early enhancement preceded suppression of the response. The modulation of proliferative responses by anti-Thy-1 did not result from a nonspecific mitogenic effect of the antibodies on T lymphocytes, because no effects were observed when antibodies were added to responder cells alone. These results suggest that the Thy-1 molecule, or a molecule that is located on the cell membrane in close proximity to the Thy-1 antigen, is involved in the activation of T lymphocytes.  相似文献   

15.
In our previous study, thymus cells were shown to be responsible for enhancing the growth of the allogeneic sarcoma 180 (S180) in AKR mice that had been injected with goat anti-Th-B antibody reagent (antiserum raised in goats against Balb/c myeloma MOPC 104E cells and purified). We suggested that the cells producing enhancement are suppressor T cells. We now show that the cells responsible for tumor enhancement are indeed T cells, since they carry the Thy-1 antigen on their surface. Treatment of the cells in vitro with anti-Thy-1 plus complement completely eliminates their ability to enhance tumor growth. The thymocytes responsible for tumor enhancement do not carry the Th-B determinant. Treating thymocytes in vitro with goat anti-Th-B antibody reagent plus complement does not abrogate their tumor-enhancing activity. This suggests that the suppressor T cells involved in tumor enhancement are generated by the interaction of anti-Th-B antibodies with precursor suppressor cells which do carry Th-B. Once generated, the active suppressor cells lose the Th-B antigen. This suggestion is supported by our finding that the thymic precursors of Con A-inducible suppressor cells bear Th-B, since they are killed by anti-Th-B plus complement, whereas active suppressor cells induced by Con A do not carry Th-B, since they are not killed by anti-Th-B plus complement. Neither splenic precursors of Con A-inducible suppressor cells nor the active suppressor cells thus induced carry Th-B since neither is killed by anti-Th-B plus complement. We have also found that there are apparently nonthymic suppressor cell precursors which can also be activated by anti-Th-B, since spleen cells from thymectomized mice bearing S180 and treated with anti-Th-B can transfer the tumor-enhancing effect. We conclude that precursors of suppressor cells carry the Th-B determinant. These precursors differentiate to active suppressor cells when stimulated by anti-Th-B antibodies. This process can take place either outside the thymus or in the thymus. Once differentiated, the mature suppressor cells no longer bear the Th-B marker and migrate from their sites of induction. Such cells can suppress immune mechanisms responsible for allogeneic tumor graft rejection and thus cause tumor enhancement.  相似文献   

16.
Multivalent hybrid antibody (MHA) complexes with double specificity were prepared by combining two different antibodies, one specific against ferritin (Fer), the other against horseradish peroxidase using protein A from Staphylococcus aureus (SpA). Electron microscopy of mouse spleen lymphocytes and thymocytes (the latter coated with mouse anti-Thy-1 antibody) reacted with anti-HRP/SpA/anti-mIg complex and HRP showed the pattern of surface Ig receptors visualized by the specific peroxidase labelling. When IgG anti-Fer/SpA/IgG-anti-mIg complex was applied to the same cellular stuff, better resolution and higher accuracy were obtained although the distribution was similar. Surface Thy-1 alloantigen and Fe receptors (charged with hIgG) were simultaneously detected on the thymocyte surface by using in the same way a mixture of anti-Fer/SpA/anti-Thy-1 and anti-HRP/SpA/anti-Fab. The concomitant ultrastructural visualization of Thy-1 (with Fer) and Fc (with HRP) on mouse thymocytes clearly showed that their distribution was mainly independent and that the amount of Thy-1 antigen prevailed. These data show that electron microscopy with a mixture of MHA may be a useful technique for the concomitant location of two antigenic determinants on the cell surface.  相似文献   

17.
A hybridoma clone secreting rat monoclonal antibody (MAB) designated as 3F3.5F and which reacted with a population of activated tumoricidal mouse peritoneal macrophage (M phi) was produced by the fusion of mouse myeloma cells with rat spleen cells immunized against adherent BCG-activated mouse peritoneal exudate cells (adherent BCG-PEC). The antibody was cytotoxic and of the rat IgM class. The specific reactivity of the antibody with mouse primary cells and cell lines was examined by complement-dependent cytotoxicity and indirect immunofluorescence flow cytometry analysis. The antibody was found to bind to about 40% of the adherent BCG-PEC activated in vivo and elicited peritoneal macrophages activated in vitro by lymphokine and lipopolysaccharide (LPS), to about 35% of polymorphonuclear neutrophils (PMN) 15 hr after intraperitoneal injection of BCG, to about 30% of bone marrow cells from BCG-infected mice, to about 10% of P815 mastocytoma cells and to thioglycollate-induced PEC to some degree. It did not bind to other cells tested including BCG-induced peritoneal lymphocytes, non-tumoricidal PEC, thymocytes, spleen cells, resting bone marrow cells from normal mice, lymphomas, myelomas, fibroblasts, or macrophage-cell lines. Pretreatment of adherent BCG-PEC with MAB 3F3.5F and rabbit complement caused a considerable decrease in tumor cytotoxicity toward P815 cells, but the same pretreatment of non-adherent BCG-PEC had no inhibitory effect on natural killer activity for YAC-1 cells.  相似文献   

18.
In cyclophosphamide (CP)-induced tolerance, a long lasting skin allograft tolerance was established in many H-2-identical strain combinations without graft vs host disease. Destruction of donor-reactive T cells of host origin, followed by intrathymic clonal deletion of these cells, has been revealed to be the chief mechanisms of this system. Here, we studied the fate of host-reactive populations in donor-derived T cells of C3H/He (C3H) (H-2k, Mls-1b, Mls-2a) mice rendered CP-induced tolerant to AKR/J (AKR) (H-2k, Mls-1a, Mls-2b), by assessing AKR-derived Thy-1.1+ T cells bearing TCR V beta 3 that are specifically reactive with Mls-2a-encoded Ag of the recipient C3H mice. In the AKR-derived Thy-1.1+ lymph node cells of the C3H mice that had been treated with AKR spleen cells plus CP, CD4(+)-V beta 3+ T cells were obviously decreased by day 10 after the CP treatment. At this stage, the Thy-1.1+ T cells were not detected in the C3H thymus, suggesting that the obvious decrease of CD4(+)-V beta 3+ T cells of AKR origin was not due to intrathymic clonal deletion in the recipient C3H mice. Therefore, the destruction of the host-reactive mature T cells of donor origin, as well as that of the donor-reactive mature T cells of host origin, occurred by the CP treatment at the induction phase. Furthermore, after the establishment of intrathymic mixed chimerism in the recipient C3H mice, V beta 3+ T cells were not detected among the Thy-1.1+ T cells of AKR origin in the mixed chimeric thymus, suggesting that the host-reactive immature T cells repopulated from the injected donor hematopoietic cells were clonally deleted in the recipient thymus. These two mechanisms appear to prevent graft vs host disease in CP-induced tolerance.  相似文献   

19.
We have evaluated both the proliferative response as well as the Thy-1 Ag expression of lymphocytes from mice treated in vivo with an anti-Thy-1 immunotoxin (IT). The IT was a rat IgG2c mAb recognizing the Thy-1 Ag, disulfide-linked to a ribosome-inactivating protein isolated from the seeds of the plant Saponaria officinalis (soapwort). Toxicity studies showed that a single i.v. injection of doses up to 20 micrograms IT/mouse was well tolerated and allowed indefinite survival. The Con A-induced proliferative response of spleen cells from mice killed 1 day after treatment with sublethal doses of IT was inhibited in a dose-dependent manner, with complete inhibition observed at doses of greater than or equal to 5 micrograms IT/mouse. Control experiments showed that the inhibition was due to the IT and not to its single components. Moreover, the IT effect was abolished by a large (100-fold) excess of anti-Thy-1 mAb alone given concurrently, but not by an unrelated, isotype-matched rat mAb. At all IT doses, the proliferative response to a B cell mitogen (LPS) was normal. Kinetic studies showed a time- and dose-dependent reconstitution of Con A responsiveness. In limiting dilution cultures of spleen cells from mice treated with 5 micrograms IT 1 or 4 days before death, a 97% depletion of T lymphocytes capable of proliferation was observed. Limiting dilution cultures showed that also the thymus of IT-treated mice was depleted by more than 90% of growth-competent T lymphocytes. Cytofluorographic studies of Thy-1+ cells from the spleens of IT-treated mice gave results which did not correlate with those obtained in functional assays. Thus, a dose-dependent reduction, followed by a time-dependent reconstitution of Thy-1+ cells was observed in this case too, but the depletion occurred at later time points and was less complete than that observed in functional assays. Moreover, the mean fluorescence intensity of the residual Thy-1+ cells decreased below normal levels.  相似文献   

20.
The potential role of Thy-1 in CD3/TCR complex-mediated signal delivery to murine thymocytes was studied. Ag-mimicking cross-linked anti-CD3 mAb stimulated suspension of thymocytes from adult (6 to 8 wk old) mice for a brisk free cytoplasmic calcium ion ([Ca2+]i) rise, low level of inositol phosphate production, and marginal increase in tyrosine-specific phosphorylation of 110/120-kDa and 40-kDa cellular proteins. Weak but sustained [Ca2+]i rise, low inositol phosphate production, and weak protein tyrosine phosphorylation were also induced by the cross-linked anti-Thy-1 mAb that mimicked the putative natural ligand. The signal delivered via either of these two pathways was however insufficient for definitively promoting cell death and DNA fragmentation in the adult thymocytes. Here we demonstrated that anti-Thy-1 mAb synergized with anti-CD3 mAb for inducing a long-lasting prominent [Ca2+]i rise, definite inositol 1,4,5-triphosphate and inositol 1,3,4,5-tetrakiphosphate production, and extensive tyrosine-specific phosphorylation of 110/120-, 92-, 75-, and 40-kDa proteins, which resulted in marked promotion of cell death and DNA fragmentation in the adult thymocytes. This unique anti-Thy-1 antibody activity was confirmed to be directed to glycosylphosphatidylinositol-anchored Thy-1, and was distinguished from the known anti-L3T4 activity that augmented the CD3-mediated signal transduction in a different manner. The synergistic actions of anti-CD3 and anti-Thy-1 mAb obligatorily required the cross-linking of the two mAb together. The anti-CD3 and anti-Thy-1 mAb cross-linked together acted on immature thymocytes from newborn (less than 24 h after birth) mice for rather more extensive promotion of protein tyrosine phosphorylation and cell death. In addition, they affected peripheral T lymphocytes for accelerating protein tyrosine phosphorylation but not cell death. These results suggest a novel function of glycosylphosphatidylinositol-anchored Thy-1 as a possible unique intrathymic intensifier of the CD3/TCR complex-delivered signal for negative thymocyte selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号