首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dimethylamine (DMA) circulates in human blood and is excreted in the urine. Major precursor for endogenous DMA is asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis. ADMA is hydrolyzed to DMA and L-citrulline by dimethylarginine dimethylaminohydrolase (DDAH). In previous work, we reported a GC-MS method for the quantification of DMA in human urine. This method involves simultaneous derivatization of endogenous DMA and the internal standard (CD(3))(2)NH by pentafluorobenzoyl chloride (PFBoylCl) and extraction of the pentafluorobenzamide derivatives by toluene. In the present work, we optimized this derivatization/extraction procedure for the quantitative determination of DMA in human plasma. Optimized experimental parameters included vortex time and concentration of PFBoylCl, carbonate and internal standard. The GC-MS method was thoroughly validated and applied to measure DMA concentrations in human plasma and serum samples. GC-MS quantification was performed by selected-ion monitoring of the protonated molecules at m/z 240 for DMA and m/z 246 for (CD(3))(2)NH in the positive-ion chemical ionization mode. Circulating DMA concentration in healthy young women (n=18) was determined to be 1.43+/-0.23 micaroM in serum, 1.73+/-0.17 microM in lithium heparin plasma, and 9.84+/-1.43 microM in EDTA plasma. DMA was identified as an abundant contaminant in EDTA vacutainer tubes (9.3+/-1.9 nmol/monovette, n=6). Serum and lithium heparin vacutainer tubes contained considerably smaller amounts of DMA (0.42+/-0.01 and 0.95+/-0.01 nmol/monovette, respectively, each n=6). Serum is recommended as the most appropriate matrix for measuring DMA in human blood. The present GC-MS method should be useful for the determination of systemic and whole body DDAH activity by measuring circulating and excretory DMA in experimental and clinical studies.  相似文献   

2.
Asymmetric dimethylarginine (ADMA) systemic concentrations are elevated in hypercholesterolemic adults and contribute to nitric oxide (NO) dependent endothelial dysfunction. Decreased activity of the key ADMA-hydrolyzing enzyme dimethylarginine dimethylaminohydrolase (DDAH) may be involved. Yet, the ADMA/DDAH/NO pathway has not been investigated in childhood hypercholesterolemia. We studied 64 children with hypercholesterolemia type II (HCh-II) and 54 normocholesterolemic (NCh) children (mean ± SD; age, years: 11.1 ± 3.5 vs. 11.9 ± 4.6). Plasma and urine ADMA was measured by GC-MS/MS. Dimethylamine (DMA), the ADMA metabolite, creatinine, nitrite and nitrate in urine were measured by GC-MS. The DMA/ADMA molar ratio in urine was calculated to estimate whole body DDAH activity. ADMA plasma concentration (mean ± SD; nM: 571 ± 85 vs. 542 ± 110, P = 0.17) and ADMA urinary excretion rate (mean ± SD: 7.1 ± 2 versus 7.2 ± 3 μmol/mmol creatinine, P = 0.6) were similar in HCh-II and NCh children. Both DMA excretion rate [median (25th-75th percentile): 56.3 (46.4-109.1) vs. 45.2 (22.2-65.5) μmol/mmol creatinine, P = 0.0004] and DMA/ADMA molar ratio [median (25th-75th percentile): 9.2 (6.0-16.3) vs. 5.4 (3.8-9.4), P = 0.0004] were slightly but statistically significantly increased in HCh-II children compared to NCh children. Plasma and urinary nitrite and nitrate were similar in both groups. In HCh-II whole body DDAH activity is elevated as compared to NCh. HCh-II children treated with drugs for hypercholesterolemia had lower plasma ADMA levels than untreated HCh-II or NCh children, presumably via increased DDAH activity. Differences between treated and untreated HCh-II children were not due to differences in age. In conclusion, HCh-II children do not have elevated ADMA plasma levels, largely due to an apparent increase in DDAH activity. While this would tend to limit development of endothelial dysfunction, it is not clear whether this might be medication-induced or represent a primary change in HCh-II children.  相似文献   

3.
Asymmetric dimethylarginine (ADMA; N(G),N(G)-dimethyl-L-arginine) is the most important endogenous inhibitor of nitric oxide synthase and a potential risk factor for cardiovascular diseases. This article describes a gas chromatographic-tandem mass spectrometric (GC-tandem MS) method for the accurate quantification of ADMA in human plasma or serum and urine using de novo synthesized [2H(3)]-methyl ester ADMA (d(3)Me-ADMA) as the internal standard. Aliquots (100 microl) of plasma/serum ultrafiltrate or native urine and of aqueous solutions of synthetic ADMA (1 microM for plasma and serum; 20 microM for urine) are evaporated to dryness. The residue from plasma/serum ultrafiltrate or urine is treated with a 100 microl aliquot of 2M HCl in methanol, whereas the residue of the ADMA solution is treated with a 100 microl aliquot of 2M HCl in tetradeuterated methanol. Methyl esters are prepared by heating for 60 min at 80 degrees C. After cooling to room temperature, the plasma or urine sample is combined with the d(3)Me-ADMA sample, the mixture is evaporated to dryness, the residue treated with a solution of pentafluoropropionic (PFP) anhydride in ethyl acetate (1:4, v/v) and the sample is incubated for 30 min at 65 degrees C. Solvent and reagents are evaporated under a stream of nitrogen gas, the residue is treated with a 200 microl aliquot of 0.4M borate buffer, pH 8.5, and toluene (0.2 ml for plasma, 1 ml for urine). Reaction products are extracted by vortexing for 1 min, the toluene phase is decanted, and a 1 microl aliquot is injected into the GC-tandem MS instrument. Quantitation is performed by selected reaction monitoring (SRM) of the common product ion at m/z 378 which is produced by collision-induced dissociation of the ions at m/z 634 for endogenous ADMA and m/z 637 for d(3)Me-ADMA. In plasma and urine of healthy humans ADMA was measured at concentrations of 0.39+/-0.06 microM (n=12) and 3.4+/-1.1 micromol/mmol creatinine (n=9), respectively. The limits of detection and quantitation of the method are approximately 10 amol and 320 pM of d(3)Me-ADMA, respectively.  相似文献   

4.
We reported impaired endothelium-derived relaxation factor/nitric oxide (EDRF/NO) responses and constitutive nitric oxide synthase (cNOS) activity in subcutaneous vessels dissected from patients with essential hypertension (n = 9) compared with normal controls (n = 10). We now test the hypothesis that the patients in this study have increased circulating levels of the cNOS inhibitor, asymmetric dimethylarginine (ADMA), or the lipid peroxidation product of linoleic acid, 13-hydroxyoctadecadienoic acid (HODE), which is a marker of reactive oxygen species. Patients had significantly (P < 0.001) elevated (means +/- SD) plasma levels of ADMA (P(ADMA), 766 +/- 217 vs. 393 +/- 57 nmol/l) and symmetric dimethylarginine (P(SDMA): 644 +/- 140 vs. 399 +/- 70 nmol/l) but similar levels of L-arginine accompanied by significantly (P < 0.015) increased rates of renal ADMA excretion (21 +/- 9 vs. 14 +/- 5 nmol/mumol creatinine) and decreased rates of renal ADMA clearance (18 +/- 3 vs. 28 +/- 5 ml/min). They had significantly increased plasma levels of HODE (P(HODE): 309 +/- 30 vs. 226 +/- 24 nmol/l) and renal HODE excretion (433 +/- 93 vs. 299 +/- 67 nmol/micromol creatinine). For the combined group of normal and hypertensive subjects, the individual values for plasma levels of ADMA and HODE were both significantly (P < 0.001) and inversely correlated with microvascular EDRF/NO and positively correlated with mean blood pressure. In conclusion, elevated levels of ADMA and oxidative stress in a group of hypertensive patients could contribute to the associated microvascular endothelial dysfunction and elevated blood pressure.  相似文献   

5.
A high-throughput analytical method was developed for the measurement of asymmetric dimethylarginine (ADMA) and L-arginine (ARG) from plasma using LC/MS/MS. The sample preparation was simple and only required microfiltration prior to analysis. ADMA and ARG were assayed using mixed-mode ion-exchange chromatography which allowed for the retention of the un-derivatized compounds. The need for chromatographic separation of ADMA from symmetric dimethylarginine (SDMA) was avoided by using an ADMA specific product ion. As a result, the analytical method only required a total run time of 2 min. The method was validated by linearity, with r2>or=0.995 for both compounds, and accuracy, with no more than 7% deviation from the theoretical value. The estimated limit of detection and limit of quantification were suitable for clinical evaluations. The mean values of plasma ADMA and ARG taken from healthy volunteers (n=15) were 0.66+/-0.12 and 87+/-35 microM, respectively; the mean molar ratio of ARG to ADMA was 142+/-81.  相似文献   

6.
Plasma concentration of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis from l-arginine and a cardiovascular risk factor, was found to be elevated in plasma of homocysteinemic adults. Enhanced cardiovascular risk due to homocystinuria and impaired renal function has been found in patients with phenylketonuria (PKU) on protein-restricted diet. However, it is still unknown whether ADMA synthesis is also elevated in children with homocystinuria due to cystathionine beta-synthase deficiency (classical homocystinuria), and whether ADMA may play a role in phenylketonuria in childhood. In the present study, we investigated the status of the l-arginine/NO pathway in six young patients with homocystinuria, in 52 young phenylketonuria patients on natural protein-restricted diet, and in age- and gender-matched healthy children serving as controls. ADMA in plasma and urine was determined by GC–MS/MS. The NO metabolites nitrate and nitrite in plasma and urine, and urinary dimethylamine (DMA), the dimethylarginine dimethylaminohydrolase (DDAH) metabolite of ADMA, were measured by GC–MS. Unlike urine ADMA excretion, plasma ADMA concentration in patients with homocystinuria was significantly higher than in controls (660 ± 158 vs. 475 ± 77 nM, P = 0.035). DMA excretion rate was considerably higher in children with homocystinuria as compared to controls (62.2 ± 24.5 vs. 6.5 ± 2.9 μmol/mmol creatinine, P = 0.068), indicating enhanced DDAH activity in this disease. In contrast and unexpectedly, phenylketonuria patients had significantly lower ADMA plasma concentrations compared to controls (512 ± 136 vs. 585 ± 125 nM, P = 0.009). Phenylketonuria patients and controls had similar l-arginine/ADMA molar ratios in plasma. Urinary nitrite excretion was significantly higher in phenylketonuria as compared to healthy controls (1.7 ± 1.7 vs. 0.7 ± 1.2 μmol/mmol creatinine, P = 0.003). Our study shows that the l-arginine/NO pathway is differently altered in children with phenylketonuria and homocystinuria. Analogous to hyperhomocysteinemic adults, elevated ADMA plasma concentrations could be a cardiovascular risk factor in children with homocystinuria. In phenylketonuria, the l-arginine/NO pathway seems not be altered. Delineation of the role of ADMA in childhood phenylketonuria and homocystinuria demands further investigation.  相似文献   

7.
Nitric oxide (NO) synthesis is modulated by dimethylarginine dimethylaminohydrolase (DDAH) via metabolizing asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor. This study investigated whether glycosylated bovine serum albumin (GBSA) could impair NO synthesis by inhibition of DDAH expression and activity, and whether DDAH2 overexpression could reverse the impaired NO synthesis induced by GBSA in endothelial cells. Overexpression of DDAH2 gene was established by liposome-mediated gene transfection in ECV304 endothelial cell line. Cells were incubated with 1.70 mmol/L GBSA for 48h. And the expressions of DDAH1 and DDAH2, gene activities of DDAH and NOS in cells, as well as concentrations of ADMA and NO in media were assayed. The activity of DDAH and expression of DDAH2 gene but not DDAH1 gene were inhibited in endothelial cells after exposure to GBSA, whereas the concentrations of ADMA were increased concomitantly with the decrease of NOS activity in cells and NO production in media. Overexpression of DDAH2 gene could prevent the inhibition of DDAH activity induced by GBSA (0.55+/-0.02 vs 0.42+/-0.02U/g pro; n=3; P<0.05), decrease ADMA concentration (0.59+/-0.04 vs 1.13+/-0.11 micromol/L; n=3; P<0.01), and increase NOS activity and NO production (53.77+/-3.40 vs 34.59+/-2.57 micromol/L; P<0.05) compared with untransfected cells treated with GBSA. These results suggest that decreased DDAH activity and subsequent elevated endogenous ADMA are implicated in the inhibition of NO synthesis induced by GBSA, and overexpression of DDAH2 gene can prevent these changes in DDAH/ADMA/NOS/NO pathway of endothelial cells exposed to GBSA.  相似文献   

8.
Busch M  Fleck C  Wolf G  Stein G 《Amino acids》2006,30(3):225-232
Summary. Background: Asymmetrical dimethylarginine (ADMA) is an inhibitor of nitric-oxide synthase. It has been linked to atherosclerotic risk in the general population as well as in end-stage renal disease patients (ESRD), whereas symmetrical dimethylarginine (SDMA) is thought to be biological inactive. Prospective data concerning the role of both dimethylarginines are rare in patients with chronic kidney disease. Methods: 200 patients with chronic kidney disease (mean age 57.6 ± 13.0 years, 69 female, 131 male); 82 with chronic renal failure (CRF), 81 on maintenance haemodialysis (HD) and 37 renal transplant recipients (RTR) were prospectively followed for 24 months. ADMA and SDMA were measured by HPLC. The relation of plasma levels of ADMA and SDMA together with conventional risk factors for the cardiovascular and renal outcome was investigated with Cox proportional hazards model. Results: Mean serum levels of SDMA were significantly increased in all groups compared to the control group (P ≤ 0.0005), ADMA was increased only in HD and RTR (P ≤ 0.004). Forty-seven cardiovascular events (CVE) occurred during follow-up, 35 patients died, and 39 patients reached ESRD. Multivariate analysis showed diabetes (RR 3.072, P = 0.01), ESRD (RR 11.915, P < 0.0005), elevated CRP levels (RR 3.916, P < 0.0005) and surprisingly a lower ADMA level (RR 0.271, P = 0.008) as independent risk factors for CVE. Serum creatinine (RR 11.378, P = 0.001), haemoglobin (RR 0.710, P = 0.038 for an increment of 1 mmol/l), and SDMA levels (RR 1.633, P = 0.006, per 1 μmol/l increment) were predictors for the progression to ESRD. Conclusions: Data from a heterogeneous group of patients with chronic kidney disease provide evidence that conventional risk factors seem to play a more important role than elevated serum levels of ADMA or SDMA for cardiovascular events. Increasing serum SDMA concentration seems to play an additive role for the renal outcome besides serum creatinine and haemoglobin levels. Whether ADMA might possibly be a candidate for the phenomenon of “paradoxical epidemiology” in chronic kidney disease needs further investigation.  相似文献   

9.
Xiong Y  Lei M  Fu S  Fu Y 《Life sciences》2005,77(2):149-159
This study was designed to investigate the effect of diabetic duration on serum concentrations of endogenous inhibitor of nitric oxide synthase N(G), N(G)-asymmetric dimethylarginine (ADMA) in patients and rats with diabetes, and to determine whether elevated endogenous ADMA is implicated in endothelial dysfunction or macroangiopathy in diabetes. Experimental diabetic model was induced by a single intraperitoneal injection of streptozotocin to male Sprague-Dawley rats and fed for 2-, 4- and 8-week, respectively. Type 2 diabetic patients with different diabetic duration were recruited from Xiangya Hospital. Plasma glucose and serum ADMA levels were measured in both patients and rats. Moreover, endothelium-dependent relaxation of thoracic aortas and some parameters of metabolic control were examined in rats. Serum ADMA concentrations were significantly elevated in type 2 diabetic patients compared with healthy subjects (3.44 +/- 0.40 vs 1.08 +/- 0.14 micromol/L, n = 50 in diabetic patients and n = 40 in healthy subjects, P < 0.01). The serum levels of ADMA in patients with macroangiopathy were higher than the patients without macroangiopathy (P < 0.01). But no difference was observed in serum ADMA concentrations between groups of patients with different diabetic duration. Similarly, serum levels of ADMA in diabetic rats were also significantly elevated at 2-week duration compared with duration-matched control (3.71 +/- 0.20 vs 1.04 +/- 0.23 micromol/L, n = 5 approximately 6, P < 0.01). This elevation of ADMA was retained to 4- and 8-week (3.54 +/- 0.76 vs 0.95 +/- 0.06 micromol/L for 4-week, 3.21 +/- 0.50 vs 1.03 +/- 0. 09 micromol/L for 8-week, n = 5 approximately 6, all P < 0.01) and remained unchanged among three diabetic groups. The elevation of ADMA was accompanied by impairment of endothelium-dependent relaxation and poor metabolic control in diabetic rat. These results first reveal that the extent of elevation in serum ADMA in both rats and patients with diabetes is not proportion with the length of their diabetic duration but rather with the metabolic control of this disease. Elevated endogenous ADMA may be implicated in diabetes-induced endothelial dysfunction and macroangiopathy. This study is helpful to prevention and treatment of diabetic-induced endothelial dysfunction or macroangiopathy.  相似文献   

10.
Elevated plasma concentrations of symmetrical dimethylarginine (SDMA) and asymmetrical dimethylarginine (ADMA) are repeatedly associated with kidney failure. Both ADMA and SDMA can be excreted in urine. We tested whether renal excretion is necessary for acute, short-term maintenance of plasma ADMA and SDMA. Sprague-Dawley rats underwent sham operation, bilateral nephrectomy (NPX), ureteral ligation, or ureteral section under isoflurane anesthesia. Tail-snip blood samples (250 microl) were taken before and at 6- or 12-h intervals for 72 h after operation. Plasma clearance was assessed in intact and NPX rats. High-performance liquid chromatography determined SDMA and ADMA concentrations. Sodium, potassium, creatinine, blood urea nitrogen (BUN), and body weight were also measured. Forty-eight hours after NPX, SDMA increased 25 times (0.23 +/- 0.03 to 5.68 +/- 0.30 microM), whereas ADMA decreased (1.17 +/- 0.08 to 0.73 +/- 0.08 microM) by 38%. Creatinine and BUN increased, paralleling SDMA. Sham-operated animals showed no significant changes. Increased SDMA confirms continuous systemic production of SDMA and its obligatory renal excretion, much like creatinine. In contrast, decreased plasma ADMA suggests that acute total NPX either reduced systemic ADMA formation and/or systemic hydrolysis of ADMA increased 48-h post-NPX. However, plasma clearance of ADMA appeared unchanged 48 h after NPX. We conclude that renal excretory function is needed for SDMA elimination but not needed for acute, short-term ADMA elimination in that systemic hydrolysis is fully capable of clearing plasma ADMA.  相似文献   

11.
Accumulation of symmetric dimethylarginine in hepatorenal syndrome   总被引:4,自引:0,他引:4  
In patients with cirrhosis, nitric oxide (NO), asymmetric dimethylarginine (ADMA), and possibly symmetric dimethylarginine (SDMA) have been linked to the severity of the disease. We investigated whether plasma levels of dimethylarginines and NO are elevated in patients with hepatorenal syndrome (HRS), compared with patients with cirrhosis without renal failure (no-HRS). Plasma levels of NO, ADMA, SDMA, and l-arginine were measured in 11 patients with HRS, seven patients with no-HRS, and six healthy volunteers. SDMA concentration in HRS was higher than in no-HRS and healthy subjects (1.47 +/- 0.25 vs. 0.38 +/- 0.06 and 0.29 +/- 0.04 microM, respectively; P < 0.05). ADMA and NOx concentrations were higher in HRS and no-HRS patients than in healthy subjects (ADMA, 1.20 +/- 0.26, 1.11 +/- 0.1, and 0.53 +/- 0.06 microM, respectively; P < 0.05; NOx, 94 +/- 9.1, 95.5 +/- 9.54, and 37.67 +/- 4.62 microM, respectively; P < 0.05). In patients with HRS there was a positive correlation between serum creatinine and plasma SDMA (r2 =0.765, P < 0.001) but not between serum creatinine and ADMA or NOx. The results suggest that renal dysfunction is a main determinant of elevated SDMA concentration in HRS. Accumulation of ADMA as a result of impaired hepatic removal may be the causative factor initiating renal vasoconstriction and SDMA retention in the kidney.  相似文献   

12.
Previously, we demonstrated the utility of a gas chromatography–tandem mass spectrometry (GC–MS/MS) method for the quantitative determination of asymmetric dimethylarginine (ADMA) in biological samples. Here we report the extension of this method to symmetric dimethylarginine (SDMA) in human urine. SDMA and ADMA were simultaneously quantitated in urine by using their in situ prepared trideuteromethyl esters as internal standards. The GC–MS/MS method was validated for SDMA and ADMA in spot urine samples of 19 healthy adults. In these samples, the creatinine-corrected excretion rate was 3.23 ± 0.63 μmol/mmol for SDMA and 3.14 ± 0.98 μmol/mmol for ADMA.  相似文献   

13.
The performance of a new ELISA assay kit (DLD Diagnostika GmbH, Hamburg, Germany) for the determination of asymmetric dimethylarginine (ADMA) was evaluated against a reversed phase HPLC method. ADMA concentrations of 55 serum samples were measured with both methods. The intra-assay CV for ADMA-ELISA was 19% (n=10). Inter-assay CVs for ADMA-ELISA were 9% for kit control 1 (0.410+/-0.037 microM) and 14% for kit control 2 (1.174+/-0.165 microM). The intra- and inter-assay CVs for HPLC assay for ADMA were 2.5% (0.586+/-0.015 microM) and 4.2% (0.664+/-0.028 microM), respectively. There was no correlation between these two methods (R(2)=0.0972). The effect of storage conditions of the samples on ADMA concentrations was investigated by HPLC. ADMA concentration was stable after four freezing and thawing cycles. Overall, the HPLC method offered better sensitivity, selectivity and, very importantly, simultaneous determination of ADMA, SDMA, l-homoarginine and l-arginine.  相似文献   

14.
Endothelial function is impaired in hypercholesterolemia and atherosclerosis, which is probably due to reduced biological activity of endothelium-derived nitric oxide (NO). NO is synthesized in functionally intact endothelium by oxidation of the terminal guanidino nitrogen atom(s) of the amino acid precursor, L-arginine. We applied stable isotope dilution techniques and gas chromatographic-mass spectrometric approaches to investigate metabolism of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate in hypercholesterolemic rabbits and controls. After 4 weeks on control or 1% cholesterol-enriched diet, rabbits received 267 +/- 6 micromol of L-[guanidino-(15)N(2)]-arginine/kg of body weight via gastric cannulation. (15)N-isotope content of L-arginine in plasma and in platelet lysates increased 2h later in both groups, and almost returned to baseline until 24h. (15)N-isotope content of plasma nitrite and nitrate also increased in both groups at 2h, and had almost returned to natural content 24h later. (15)N-isotope content of urinary nitrate was significantly increased in control animals in urines collected from 0 to 12, 12 to 24, and had returned to baseline in the urine sample collected from 24 to 48 h. In the cholesterol group only a slight, insignificant elevation of (15)N-isotope content was observed for urinary nitrate. The extent of conversion of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate was strongly and inversely correlated to plasma concentration of the endogenous NO synthase inhibitor, asymmetric dimethylarginine (ADMA), which was elevated in cholesterol-fed rabbits (R=0.77; p < 0.05). Our data show that baseline NO synthase turnover rate is reduced in rabbits during early hypercholesterolemia. Our study gives evidence that the mechanism of the impaired conversion of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate most likely involves inhibition of NO synthase by ADMA, which is present in elevated concentrations in hypercholesterolemia.  相似文献   

15.
The balance between nitric oxide (NO) and vasoconstrictors like endothelin is essential for vascular tone and endothelial function. L-Arginine is converted to NO and L-citrulline by NO synthase (NOS). Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) are endogenous inhibitors of NO formation. ADMA is degraded by dimethylamino dimethylhydrolases (DDAHs), while SDMA is exclusively eliminated by the kidney. In the present article we report a LC-tandem MS method for the simultaneous determination of arginine, ADMA, and SDMA in plasma. This method is designed for high sample throughput of only 20-mul aliquots of human or mouse plasma. The analysis time is reduced to 1.6 min by LC-tandem MS electrospray ionisation (ESI) in the positive mode. The mean plasma levels of l-arginine, ADMA, and SDMA were 74+/-19 (SD), 0.46+/-0.09, and 0.37+/-0.07 microM in healthy humans (n=85), respectively, and 44+/-14, 0.72+/-0.23, and 0.19+/-0.06 microM in C57BL/6 mice. Also, the molar ratios of arginine to ADMA were different in man and mice, i.e. 166+/-50 and 85+/-22, respectively.  相似文献   

16.
Little is known of the post-absorptive, metabolic fate of gamma-tocopherol, the major form of vitamin E in North American diets. The objective of this study was to determine the extent of urinary excretion of 2,7, 8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC), a recently identified metabolite of gamma-tocopherol. A method for measurement of urinary gamma-CEHC was developed, using gas chromatography-mass spectrometry (GC-MS) with a deuterated internal standard, 2,7,8-trimethyl-2-(beta-carboxyethyl)-(3, 4-2H2)-6-hydroxychroman (d2-gamma-CEHC). This standard was synthesized by dehydrogenation of 6-acetyl-gamma-CEHC followed by deuteration of the resulting 3,4-double bond. The use of d2-gamma-CEHC resulted in accurate determinations of the concentration of d0-gamma-CEHC in human urine. Urine samples containing added d2-gamma-CEHC were treated with beta-glucuronidase, extracted with an organic solvent, and analyzed by GC-MS. Analysis of 24-h urine pools from healthy subjects revealed gamma-CEHC concentrations, normalized against creatinine, ranging from 2.5 to 31.5 micromol/g creatinine, or a total of 4.6 to 29.8 micromol per day. These results correspond to 2-12 mg gamma-tocopherol excreted daily as gamma-CEHC in the urine. Given an estimated mean intake of gamma-tocopherol of 20 mg/day, catabolism of gamma-tocopherol to gamma-CEHC, followed by glucuronide conjugation and urinary excretion, is a major pathway for elimination of gamma-tocopherol in humans.  相似文献   

17.
A simple and selective determination method of 11-dehydrothromboxane B2 (11-dehydroTXB2), which is urinary metabolite of TXA2, has been developed employing liquid chromatography-tandem mass spectrometry (LC-MS-MS). 11-DehydroTXB2 and its deuterium-labeled analogue as an internal standard were extracted from urine by simple solid-phase extraction (SPE). These compounds were analyzed using LC-MS-MS in the selected reaction monitoring (SRM) mode, by monitoring the transitions from m/z 367 to m/z 161 for 11-dehydroTXB2 and from m/z 371 to m/z 165 for its internal standard. A good linear response over the range 50 pg-10 ng per tube was demonstrated. The values determined by LC-MS-MS were well validated and closely corresponded to the values determined by gas chromatography-mass spectrometry (GC-MS). The mean concentration of 11-dehydroTXB2 in urine of healthy adults was 635 +/- 427 pg/mg creatinine (mean +/- S.D., n = 13). This simple, accurate and selective determination method described in this study should greatly aid in evaluating the role of TXA2 in vivo.  相似文献   

18.
We recently described an isotope dilution reversed-phase liquid chromatography-atmospheric pressure chemical ionization-ion-trap-tandem mass spectrometry (HPLC-APCI-MS/MS) method for the quantitative determination of oxidized amino acids in human urine, including o,o'-dityrosine, a specific marker of protein oxidation. In the present study, we investigated the possibility to use a triple quadrupole instrument for the analysis of this biomarker in urine. The two instruments were compared in terms of sensitivity, specificity and reproducibility. Results showed that the triple quadrupole instrument reaches 2.5-fold higher sensitivity (LOD=0.01 microM) compared to the previously used ion-trap instrument. Precision of the present assay is as follows: in-day variation is 4.6% and inter-day variation is 17%. The currently developed method was applied to a group of smoker urine samples. The mean urinary o,o'-dityrosine concentration was 0.08+/-0.01 microM. Expressed per urinary creatinine concentration, this corresponds to 10.1+/-0.4 micromol/mol creatinine. This is comparable to the previously reported values of 5.8+/-0.3 micromol/mol creatinine in non-smokers night-time urines, and 12.3+/-5 micromol/mol creatinine in day-time urines measured by the ion-trap instrument.  相似文献   

19.
Elevated plasma levels of asymmetric dimethylarginine (ADMA) inhibit nitric oxide formation and exert a proatherogenic action. Low testosterone (T) levels are associated with increased cardiovascular risks. This study analyzed the effects of normalization of plasma T levels on plasma levels and urinary excretion of ADMA in hypgonadal men (n=10) receiving transdermal T administration. Plasma T levels, starting from clearly hypogonadal T plasma concentrations with a mean level of 4.0+/-2.72 nmol/l at baseline, rose to >10 nmol/l after 2 weeks, with plasma T levels within the normal range of men (mean level of 22.5+/-11.3 nmol/l) over the last 16 weeks of the 24 weeks of T administration. Normalization of plasma T led to a small but significant fall of plasma ADMA (519+/-55 vs. 472+/-59 nmol/l, p=0.031). The outcome of this study may be viewed as a favorable effect of normalization of plasma testosterone on plasma ADMA since even small elevations of plasma ADMA significantly increase cardiovascular risk. While this effect of normalization of plasma T may impress as favorable, most available studies on effects of T administration to hypogonadal men have not shown beneficial effects on functions of the vascular wall.  相似文献   

20.
Cigarette smoking is associated with increased oxidative stress and increased risk of degenerative disease. As the major lipophilic antioxidant, requirements for vitamin E may be higher in smokers due to increased utilisation. In this observational study we have compared vitamin E status in smokers and non-smokers using a holistic approach by measuring plasma, erythrocyte, lymphocyte and platelet alpha- and gamma-tocopherol, as well as the specific urinary vitamin E metabolites alpha- and gamma-carboxyethyl-hydroxychroman (CEHC). Fifteen smokers (average age 27 years, smoking time 7.5 years) and non-smokers of comparable age, gender and body mass index (BMI) were recruited. Subjects completed a 7-day food diary and on the final day they provided a 24 h urine collection and a 20 ml blood sample for measurement of urinary vitamin E metabolites and total vitamin E in blood components, respectively. No significant differences were found between plasma and erythrocyte alpha- and gamma-tocopherol in smokers and non-smokers. However, smokers had significantly lower alpha-tocopherol (mean+/-SD, 1.34+/-0.31 micromol/g protein compared with 1.94+/-0.54, P = 0.001) and gamma-tocopherol (0.19+/-0.04 micromol/g protein compared with 0.26+/-0.08, P = 0.026) levels in their lymphocytes, as well as significantly lower alpha-tocopherol levels in platelets (1.09+/-0.49 micromol/g protein compared with 1.60+/-0.55, P = 0.014; gamma-tocopherol levels were similar). Interestingly smokers also had significantly higher excretion of the urinary gamma-tocopherol metabolite, gamma-CEHC (0.49+/-0.25mg/g creatinine compared with 0.32+/-0.16, P = 0.036) compared to non-smokers, while their alpha-CEHC (metabolite of alpha-tocopherol) levels were similar. There was no significant difference between plasma ascorbate, urate and F2-isoprostane levels. Therefore in this population of cigarette smokers (mean age 27 years, mean smoking duration 7.5 years), alterations to vitamin E status can be observed even without the more characteristic changes to ascorbate and F2-isoprostanes. We suggest that the measurement of lymphocyte and platelet vitamin E may represent a valuable biomarker of vitamin E status in relation to oxidative stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号