首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The gene encoding a thermostable iron-containing alcohol dehydrogenase from Thermococcus Strain ES1 (ES1 ADH) was cloned, sequenced and expressed in Escherichia coli. The recombinant and native ES1 ADHs were purified using multistep column chromatography under anaerobic conditions. Both enzymes appeared to be homotetramers with a subunit size of 45 ± 1 kDa as revealed by SDS-PAGE, which was close to the calculated value (44.8 kDa). The recombinant ADH contained 1.0 ± 0.1 g-atom iron per subunit. Both enzymes were sensitive to oxygen with a half-life upon exposure to air of about 4 min. The recombinant enzyme exhibited a specific activity of 105 ± 2 U mg−1, which was very similar to that of the native enzyme (110 ± 3 U mg−1). The optimal pH-values for both enzymes for ethanol oxidation and acetaldehyde reduction were 10.4 and 7.0, respectively. Both enzymes also showed similar temperature-dependent activities, and catalyzed the oxidation of primary alcohols, but there was no activity towards methanol and secondary alcohols. Kinetic parameters of the enzymes showed lower K m-values for acetaldehyde and NADPH and higher K m-values for ethanol and NADP+. It is concluded that the gene encoding ES1 ADH was expressed successfully in E. coli. This is the first report of a fully active recombinant version of an iron-containing ADH from a hyperthermophile.  相似文献   

2.
Kärkönen A  Fry SC 《Planta》2006,223(4):858-870
UDP-glucose dehydrogenase (UDPGDH) activity was detected in extracts of maize cell-cultures and developing leaves. The reaction product was confirmed as UDP-glucuronate. Leaf extracts from null mutants defective in one or both of the ethanol dehydrogenase genes, ADH1 and ADH2, had similar UDPGDH activities to wild-type, showing that UDPGDH activity is not primarily due to ADH proteins. The mutants showed no defect in their wall matrix pentose:galactose ratios, or matrix:cellulose ratio, showing that ADHs were not required for normal wall biosynthesis. The majority of maize leaf UDPGDH activity had K m (for UDP-glucose) 0.5–1.0 mM; there was also a minor activity with an unusually high K m of >50 mM. In extracts of cultured cells, kinetic data indicated at least three UDPGDHs, with K m values (for UDP-glucose) of roughly 0.027, 2.8 and >50 mM (designated enzymes EL, EM and EH respectively). EM was the single major contributor to extractable UDPGDH activity when assayed at 0.6–9.0 mM UDP-Glc. Most studies, in other plant species, had reported only EL-like isoforms. Ethanol (100 mM) partially inhibited UDPGDH activity assayed at low, but not high, UDP-glucose concentrations, supporting the conclusion that at least EH activity is not due to ADH. At 30 μM UDP-glucose, 20–150 μM UDP-xylose inhibited UDPGDH activity, whereas 5–15 μM UDP-xylose promoted it. In conclusion, several very different UDPGDH isoenzymes contribute to UDP-glucuronate and hence wall matrix biosynthesis in maize, but ADHs are not responsible for these activities.  相似文献   

3.
The l-alanine dehydrogenase (ADH) of Anabaena cylindrica has been purified 700-fold. It has a molecular weight of approximately 270000, has 6 sub-units, each of molecular weight approximately 43000, and shows activity both in the aminating and deaminating directions. The enzyme is NADH/NAD+ specific and oxaloacetate can partially substitute for pyruvate. The K m app for NAD+ is 14 M and 60 M at low and high NAD+ concentrations, respectively. The K m app for l-alanine is 0.4 mM, that for pyruvate is 0.11 mM, and that for oxaloacetate is 3.0 mM. The K m app for NH 4 + varies from 8–133 mM depending on the pH, being lowest at high pH levels (pH 8.7 or above). Alanine, serine and glycine inhibit ADH activity in the aminating direction. The enzyme is active both in heterocysts and vegetative cells and activity is higher in nitrogen-starved cultures than in N2-fixing cultures. The data suggest that although alanine is formed by the aminating activity of ADH, entry of newly fixed ammonia into organic combination does not occur primarily via ADH in N2-fixing cultures of A. cylindrica. Ammonia assimilation via ADH may be important in cultures with an excess of available nitrogen. The deaminating activity of the enzyme may be important under conditions of nitrogen-deficiency.Abbreviations ADH alanine dehydrogenase - DEAE diethylamino ethyl cellulose - EDTA ethylenediamine tetraacetic acid - GDH glutamic dehydrogenase - GS glutamine synthetase - GOT aspartate-glutamate aminotransferase - NAD+ nicotinamide adenine dinucleotide - NADH reduced nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - NADPH reduced nicotinamide adenine dinucleotide phosphate - SDS sodium dodecyl sulphate - Tris tris(hydroxymethyl) aminomethane  相似文献   

4.
The final activity of the alcohol dehydrogenase (E.C.1.1.1.1, abbreviated ADH) from germinating pea, isolated by fractionating with ammonium sulphate, chromatography on DEAE cellulose and gel filtration, was 80,000, from bean 25,000 and from lentil 13,500 units per mg protein. Molecular weights of the ADHs are close to each other: pea and bean ADH 60,000, lentil ADH 70,000. The Km values are mutually similar with three enzymes, i.e. of the order of 10−4M for NAD and 10−2M for ethanol. The pH optima lie in the alkaline region. These enzymes catalyse oxidation of a number of monovalent alcohols. At temperatures above 60°C the enzymes are thermally unstable. Stability is enhanced slowly by ethanol but not by NAD. Pyrazol, imidazol and pyridine inhibit plant ADH similarly to the enzyme from horse liver. There is a similarity between plant alcohol dehydrogenases and animal and yeast enzymes.  相似文献   

5.
An NAD+-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M r 48 000, and pI 3.6. It was optimally active at 45 °C and pH 9–10. It was fully stable at pH 6–7 for 24 h and 30 °C. K m values for d-xylitol and NAD+ were 94 mM and 0.14 mM, respectively. Mn2+ at 10 mM increased XDH activity 2-fold and Cu2+ at 10 mM inhibited activity completely.  相似文献   

6.
Alcohol dehydrogenase (ADH) is a key enzyme in the production and utilization of alcohols. Some also catalyze the formation of carboxylate esters from alcohols and aldehydes. The ADH1 and ADH3 genes of Neurospora crassa FGSC2489 were cloned and expressed in recombinant Escherichia coli to investigate their alcohol dehydrogenation and carboxylate ester formation abilities. Homology analysis and sequence alignment of amino acid sequence indicated that ADH1 and ADH3 of N. crassa contained a zinc-binding consensus sequence and a NAD+-binding motif and showed 54–75% identity with fungi ADHs. N. crassa ADH1 was expressed in E. coli to give a specific activity of 289 ± 9 mU/mg using ethanol and NAD+ as substrate and cofactor, respectively. Corresponding experiments on the expression and activity of ADH3 gave 4 mU/mg of specific activity. N. crassa ADH1 preferred primary alcohols containing C3–C8 carbons to secondary alcohols such as 2-propanol and 2-butanol. N. crassa ADH1 possessed 5.3 mU/mg of specific carboxylate ester-forming activity accumulating 0.4 mM of ethyl acetate in 18 h. Substrate specificity of various linear alcohols and aldehydes indicated that short chain-length alcohols and aldehydes were good substrates for carboxylate ester production. N. crassa ADH1 was a primary alcohol dehydrogenase using cofactor NAD+ preferably and possessed carboxylate ester-forming activity with short chain alcohols and aldehydes.  相似文献   

7.
Alcohol dehydrogenase (ADH; EC: 1.1.1.1) is a key enzyme in production and utilization of ethanol. In this study, the gene encoding for ADH of the haloalkaliphilic archaeon Natronomonas pharaonis (NpADH), which has a 1,068-bp open reading frame that encodes a protein of 355 amino acids, was cloned into the pET28b vector and was expressed in Escherichia coli. Then, NpADH was purified by Ni-NTA affinity chromatography. The recombinant enzyme showed a molecular mass of 41.3 kDa by SDS-PAGE. The enzyme was haloalkaliphilic and thermophilic, being most active at 5 M NaCl or 4 M KCl and 70°C, respectively. The optimal pH was 9.0. Zn2+ significantly inhibited activity. The K m value for acetaldehyde was higher than that for ethanol. It was concluded that the physiological role of this enzyme is likely the catalysis of the oxidation of ethanol to acetaldehyde.  相似文献   

8.
Objective: Consumption of high‐fat diet and alcohol is associated with obesity, leading to enhanced morbidity and mortality. This study was designed to examine the interaction between high‐fat diet and the alcohol metabolizing enzyme alcohol dehydrogenase (ADH) on ethanol‐induced cardiac depression. Research Methods and Procedures: Mechanical and intracellular Ca2+ properties were measured in cardiomyocytes from ADH transgenic and Friend Virus‐B type (FVB) mice fed a low‐ or high‐fat diet for 16 weeks. Expression of protein kinase B (Akt) and Foxo3a, two proteins essential for cardiac survival, was evaluated by Western blot. Cardiac damage was determined by carbonyl formation. Results: High fat but not ADH induced obesity without hyperglycemia or hypertension, prolonged time‐to‐90% relengthening (TR90), and depressed peak shortening (PS) and maximal velocity of shortening/relengthening (± dL/dt) without affecting intracellular Ca2+ properties. Ethanol suppressed PS and intracellular Ca2+ rise in low‐fat‐fed FVB mouse cardiomyocytes. ADH but not high‐fat diet shifted the threshold of ethanol‐induced inhibition of PS and ± dL/dt to lower levels. The amplitude of ethanol‐induced cardiac depression was greater in the high‐fat but not the ADH group without additive effects. Ethanol down‐ and up‐regulated Akt and Foxo3a expression, respectively, and depressed intracellular Ca2+ rise, the effects of which were exaggerated by ADH, high‐fat, or both. High‐fat diet, but not ADH, enhanced Foxo3a expression and carbonyl content in non‐ethanol‐treated mice. Ethanol challenge significantly enhanced protein carbonyl formation, with the response being augmented by ADH, high‐fat, or both. Discussion: Our data suggest that high‐fat diet and ADH transgene may exaggerate ethanol‐induced cardiac depression and protein damage in response to ethanol.  相似文献   

9.
Alcohol dehydrogenase activity in mouse liver homogenate-supernatants is 1.7 times greater in the C57BL/10 strain than in the BALB/c strain, regardless of whether activity is expressed in units per gram liver, total liver, or milligram DNA. The K m values for ethanol and NAD+, approximately 0.4 and 0.03mm, respectively, of enzyme purified from both strains are similar. Moreover, the K i for NADH, 1 µm, the pH optimum for ethanol oxidation, 10.5, and the V max for ethanol oxidation, 160 min–1, for ADH from the C57BL/10 and BALB/c strains are similar. Therefore, the difference in ADH activity in the two strains cannot be due to differences in the catalytic properties of the enzyme. The electrophoretic and isoelectric focusing patterns and two-dimensional tryptic peptide maps of the purified enzyme from both strains are identical. Thus the amino acid sequences of enzyme from C57BL/10 and BALB/c mice must also be identical or very similar. The difference in ADH activity in the two strains is most likely the result of genetic differences in the content of ADH protein in liver.Supported by NIAAA Grant AA 04307.  相似文献   

10.
The pyruvate dehydrogenase complex was isolated from the mitochondria of broccoli florets and shown to be similar in its reaction mechanism to the complexes from other sources. Three families of parallel lines were obtained for the initial velocity patterns, indicating a multisite ping-pong mechanism. The apparent Km values obtained were 321 ± 18, 148 ± 13, and 7.2 ± 0.51 μm for pyruvate, NAD+, and CoA, respectively. Product inhibition studies using acetyl-CoA and NADH yielded results which were in agreement with those predicted by the multisite ping-pong mechanism. Acetyl-CoA and NADH were found to be competitive inhibitors versus CoA and NAD+, respectively. All other substrate-product combinations showed uncompetitive inhibition patterns, except for acetyl-CoA versus NAD+. Among various metabolites tested, only hydroxypyruvate (Ki = 0.11 mM) and glyoxylate (Ki = 3.27 mM) were found to be capable of inhibiting the broccoli enzyme to a significant degree. Initial velocity patterns using Mg2+? or Ca2+-thiamine pyrophosphate and pyruvate as the variable substrate were found to be consistent with an equilibrium ordered mechanism where Mg? or Ca-thiamine pyrophosphate bind first, with dissociation constants of 33.8 and 3 μm, respectively. The Mg- or Ca-thiamine pyrophosphate complexes also dissociated rapidly from the enzyme complex.  相似文献   

11.
Arginase activity (3.1 ± 0.5 units/g (wet wt) of tissue) was found associated to the cytosolic fraction of the gill cells of the bivalve Semele solida. The enzyme, with a molecular weight of 120,000 ± 3000, was partially purified, and some of the enzymic properties were were examined. The activation of the enzyme by Mn2+ followed hyperbolic kinetics with a KMn value of 0.10 ± 0.02 μM. In addition to Mn2+, the metal ion requirement of the enzyme was satisfied by Ni2+, Cd2+ and Co2+; Zn2+ was inhibitory to ail the Values of Km for arginine and Ki for lysine inhibition, were the same, regardless of the metal ion used to activate the enzyme; Km values were 20 mM at pH 7.5 and 12 mM at the optimum pH of 9.5. Competitive inhibition was caused by ornithine, lysine and proline, whereas branched chain amino acids were non competitive inhibitors of the enzyme.  相似文献   

12.
A stable immobilized preparation of alcohol dehydrogenase (ADH) (EC 1.1.1.1) was obtained by entrapment of ADH-containing Saccharomyces cerevisiae cells in polyacrylamide, polymerized by gamma-rays (100 kR). The permeability barrier for the substrate through the cell membrane was found to be eliminated on entrapment. The stability characteristics, pH-activity profile and other properties of the entrapped ADH are presented. A four-fold enhancement in Km for NAD+ was observed on entrapment, whereas Km for ethanol was not altered.  相似文献   

13.
Inulin is a linear carbohydrate polymer of fructose subunits (2‐60) with terminal glucose units, produced as carbon storage in selected plants. It cannot directly be taken up by most microorganisms due to its large size, unless prior hydrolysis through inulinase enzymes occurs. The hydrolyzed inulin can be taken up by microbes and/or recovered and used industrially for the production of high fructose syrup, inulo‐oligosaccharides, biofuel, and nutraceuticals. Cell‐free enzymatic hydrolysis would be desirable for industrial applications, hence the recombinant expression, purification and characterization of an Aspergillus niger derived exo‐inulinase was investigated in this study. The eukaroyototic exo‐inulinase of Aspergillus niger 12 has been expressed, for the first time, in an E. coli strain [Rosetta‐gami B (DE3)]. The molecular weight of recombinant exo‐inulinase was estimated to be ~81 kDa. The values of Km and Vmax of the recombinant exo‐inulinase toward inulin were 5.3 ± 1.1 mM and 402.1 ± 53.1 µmol min?1 mg?1 protein, respectively. Towards sucrose the corresponding values were 12.20 ± 1.6 mM and 902.8 ± 40.2 µmol min?1 mg?1 protein towards sucrose. The S/I ratio was 2.24 ± 0.7, which is in the range of native inulinase. The optimum temperature and pH of the recombinant exo‐inulinase towards inulin was 55°C and 5.0, while they were 50°C and 5.5 towards sucrose. The recombinant exo‐inulinase activity towards inulin was enhanced by Cu2+ and reduced by Fe2+, while its activity towards sucrose was enhanced by Co2+ and reduced by Zn2+. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:629–637, 2016  相似文献   

14.
Mouse ADH4 (purified, recombinant) has a low catalytic efficiency for ethanol and acetaldehyde, but very high activity with longer chain alcohols and aldehydes, at pH 7.3 and temperature 37°C. The observed turnover numbers and catalytic efficiencies for the oxidation of all-trans-retinol and the reduction of all-trans-retinal and 9-cis-retinal are low relative to other substrates; 9-cis-retinal is more reactive than all-trans-retinal. The reduction of all-trans- or 9-cis-retinals coupled to the oxidation of ethanol by NAD+ is as efficient as the reduction with NADH. However, the Michaelis constant for ethanol is about 100 mM, which indicates that the activity would be lower at physiologically relevant concentrations of ethanol. Simulations of the oxidation of retinol to retinoic acid with mouse ADH4 and human aldehyde dehydrogenase (ALDH1), using rate constants estimated for all steps in the mechanism, suggest that ethanol (50 mM) would modestly decrease production of retinoic acid. However, if the Km for ethanol were smaller, as for human ADH4, the rate of retinol oxidation and formation of retinoic acid would be significantly decreased during metabolism of 50 mM ethanol. These studies begin to describe quantitatively the roles of enzymes involved in the metabolism of alcohols and carbonyl compounds.  相似文献   

15.
Glucose-6-phosphate dehydrogenases (G6PDs) are important enzymes widely used in bioassay and biocatalysis. In this study, we reported the cloning, expression, and enzymatic characterization of G6PDs from the thermophilic bacterium Thermoanaerobacter tengcongensis MB4 (TtG6PD). SDS-PAGE showed that purified recombinant enzyme had an apparent subunit molecular weight of 60 kDa. Kinetics assay indicated that TtG6PD preferred NADP+ (k cat/K m = 2618 mM?1 s?1, k cat = 249 s?1, K m = 0.10 ± 0.01 mM) as cofactor, although NAD+ (k cat/K m = 138 mM?1 s?1, k cat = 604 s?1, K m = 4.37 ± 0.56 mM) could also be accepted. The K m values of glucose-6-phosphate were 0.27 ± 0.07 mM and 5.08 ± 0.68 mM with NADP+ and NAD+ as cofactors, respectively. The enzyme displayed its optimum activity at pH 6.8–9.0 for NADP+ and at pH 7.0–8.6 for NAD+ while the optimal temperature was 80 °C for NADP+ and 70 °C for NAD+. This was the first observation that the NADP+-linked optimal temperature of a dual coenzyme-specific G6PD was higher than the NAD+-linked and growth (75 °C) optimal temperature, which suggested G6PD might contribute to the thermal resistance of a bacterium. The potential of TtG6PD to measure the activity of another thermophilic enzyme was demonstrated by the coupled assays for a thermophilic glucokinase.  相似文献   

16.
Kinetic studies of two glucosylation reactions catalyzed by an amyloglucosidase from Rhizopus sp. leading to the synthesis of vanillin-α/β-D-glucoside from D-glucose and vanillin and curcumin-bis-α-D-glucoside from D-glucose and curcumin were investigated in detail. Initial reaction rates were determined from kinetic runs involving different concentrations of D-glucose and vanillin (5?mM to 0.1?M) or D-glucose and curcumin (5?mM to 0.1?M). Graphical double reciprocal plots showed that the kinetics of the two enzyme catalyzed reactions exhibited Ping-Pong Bi-Bi mechanism where competitive substrate inhibition by vanillin/curcumin led to dead-end amyloglucosidase–vanillin/curcumin complexes at higher concentrations of vanillin/curcumin. An attempt to obtain the best fit of this kinetic model through computer simulation yielded in good approximation, the values of four important kinetic parameters, vanillin-α/β-D-glucoside: kcat=35.0±3.2 10?5M?h?1·mg, Ki=10.5±1.1?mM, KmD-glucose=60.0±6.2?mM, Kmvanillin=50.0±4.8?mM; curcumin-bis-α-D-glucoside: kcat=6.07±0.58 10?5M?h?1·mg, Ki=3.0±0.28?mM, KmD-glucose=10.0±0.9?mM, Kmcurcumin=4.6±0.5?mM.  相似文献   

17.
We have previously reported the presence of two Ca2+ influx components with relatively high (KCa= 152 ± 79 μm) and low (KCa= 2.4 ± 0.9 mm) affinities for Ca2+ in internal Ca2+ pool-depleted rat parotid acinar cells [Chauthaiwale et al. (1996) Pfluegers Arch. 432:105–111]. We have also reported the presence of a high affinity Ca2+ influx component with KCa= 279 ± 43 μm in rat parotid gland basolateral plasma membrane vesicles (BLMV). [Lockwich, Kim & Ambudkar (1994) J. Membrane Biol. 141:289–296]. The present studies show that a low affinity Ca2+ influx component is also present in BLMV with KCa= 2.3 ± 0.41 mm (Vmax= 16.36 ± 4.11 nmoles of Ca2+/mg protein/min). Our data demonstrate that this low affinity component is similar to the low affinity Ca2+ influx component that is activated by internal Ca2+ store depletion in dispersed parotid gland acini by the following criteria: (i) similar KCa for calcium flux, (ii) similar IC50 for inhibition by Ni2+ and Zn2+; (iii) increase in KCa at high external K+, (iv) similar effects of external pH. The high affinity Ca2+ influx in cells is different from the low affinity Ca2+ influx component cells in its sensitivity to pH, KCl, Zn2+ and Ni2+. The low and high affinity Ca2+ influx components in BLMV can also be distinguished from each other based on the effects of Zn2+, Ni2+, KCl, and dicyclohexylcarbodiimide. In aggregate, these data demonstrate the presence of a low affinity passive Ca2+ influx pathway in BLMV which displays characteristics similar to the low affinity Ca2+ influx component detected in parotid acinar cells following internal Ca2+ store depletion. Received: 19 March 1997/Revised: 25 November 1997  相似文献   

18.
A tannase with a molecular mass of 72 kDa was obtained from Penicillium herquei isolated from valonia acorns following fermentation in a 5 L bioreactor. This tannase showed optimum activity at pH 6.0 and 30°C. The enzyme was inhibited by Fe3+, Zn2+, dithiothrietol (DTT), β-mercaptoethanol, formaldehyde, and ethanol, and induced by K+, Mn2+, Tween 80, and Triton X-100. The Michaelis constant (K m) and the second-order constant (k cat/K m) values of the tannase for propyl gallate (PG) were 0.62 mM and 174.1 mM/sec. The circular dichroism (CD) spectra indicated that the secondary structure of the tannase contained 14% α helix, 32.4% anti-parallel β-sheet, 4.8% β-sheet, 18.8% β-turn, and 30% random coil. Native tannase in ultrapure water manifested as spherical nano-particle aggregates with diameters ranging from 50 to 300 nm determined by atomic force microscopy (AFM).  相似文献   

19.
Summary Because natural populations ofDrosophila melanogaster are polymorphic for different allozymes of alcohol dehydrogenase (ADH) and becauseD. melanogaster is more tolerant to the toxic effects of ethanol than its sibling speciesD. simulans, information regarding the sensitivities of the different forms of ADH to the products of ethanol degradation are of ecological importance. ADH-F, ADH-S, ADH-71k ofD. melanogaster and the ADH ofD. simulans were inhibited by NADH, but the inhibition was relieved by NAD+. The order of sensitivity of NADH was ADH-F<ADH-71k, ADH-S<ADH-simulans with ADH-F being about four times less sensitive than theD. melanogaster enzymes and 12 times less sensitive than theD. simulans enzyme. Acetaldehyde inhibited the ethanolto-acetaldehyde activity of the ADHs, but at low acetaldehyde concentrations ethanol and NAD+ reduced the inhibition. ADH-71k and ADH-F were more subject to the inhibitory action of acetaldehyde than ADH-S and ADH-simulans, with ADH-71k being seven times more sensitive than ADH-S. The pattern of product inhibition of ADH-71k suggests a rapid equilibrium random mechanism for ethanol oxidation. Thus, although the ADH variants only differ by a few amino acids, these differences exert a far larger impact on their intrinsic properties than previously thought. How differences in product inhibition may be of significance in the evolution of the ADHs is discussed.  相似文献   

20.
Dipeptidyl peptidase IV (DPP-IV) is an ectopeptidase with many roles, and a target of therapies for different pathologies. Zinc and calcium produce mixed inhibition of porcine DPP-IV activity. To investigate whether these results may be generalized to mammalian DPP-IV orthologues, we purified the intact membrane-bound form from rat kidney. Rat DPP-IV hydrolysed Gly-Pro-p-nitroanilide with an average Vmax of 0.86±0.01 μmol min–1mL–1 and KM of 76±6 μM. The enzyme was inhibited by the DPP-IV family inhibitor l-threo-Ile-thiazolidide (Ki=64.0±0.53 nM), competitively inhibited by bacitracin (Ki=0.16±0.01 mM) and bestatin (Ki=0.23±0.02 mM), and irreversibly inhibited by TLCK (IC50 value of 1.20±0.11 mM). The enzyme was also inhibited by divalent ions like Zn2+ and Ca2+, for which a mixed inhibition mechanism was observed (Ki values of the competitive component: 0.15±0.01 mM and 50.0±1.05 mM, respectively). According to bioinformatic tools, Ca2+ ions preferentially bound to the β-propeller domain of the rat and human enzymes, while Zn2+ ions to the α-β hydrolase domain; the binding sites were essentially the same that were previously reported for the porcine DPP-IV. These data suggest that the cationic susceptibility of mammalian DPP-IV orthologues involves conserved mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号