首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell‐cell interaction in the eukaryote‐prokaryote model of the unicellular, freshwater microalga Chlorella vulgaris Beij. and the plant growth‐promoting bacterium Azospirillum brasilense, when jointly immobilized in small polymer alginate beads, was evaluated by quantitative fluorescence in situ hybridization (FISH) combined with SEM. This step revealed significant changes, with an increase in the populations of both partners, cluster (mixed colonies) mode of colonization of the bead by the two microorganisms, increase in the size of microalgae‐bacterial clusters, movement of the motile bacteria cells toward the immotile microalgae cells within solid matrix, and formation of firm structures among the bacteria, microalgae cells, and the inert matrix that creates a biofilm. This biofilm was sufficiently strong to keep the two species attached to each other, even after eliminating the alginate support. This study showed that the common structural phenotypic interaction of Azospirillum with roots of higher plants, via fibrils and sheath material, is also formed and maintained during the interaction of this bacterium with the surface of rootless single‐cell microalgae.  相似文献   

2.
Enzymatic activities of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) participating in the nitrogen metabolism and related ammonium absorption were assayed after the microalga Chlorella vulgaris Beij. was jointly immobilized with the microalgae‐growth‐promoting bacterium Azospirillum brasilense. At initial concentrations of 3, 6, and 10 mg · L?1 NH4+, joint immobilization enhances growth of C. vulgaris but does not affect ammonium absorption capacity of the microalga. However, at 8 mg · L?1 NH4+, joint immobilization enhanced ammonium absorption by the microalga without affecting the growth of the microalgal population. Correlations between absorption of ammonium per cell and per culture showed direct (negative and positive) linear correlations between these parameters and microalga populations at 3, 6, and 10 mg · L?1 NH4+, but not at 8 mg · L?1 NH4+, where the highest absorption of ammonium occurred. In all cultures, immobilized and jointly immobilized, having the four initial ammonium concentrations, enzymatic activities of Chlorella are affected by A. brasilense. Regardless of the initial concentration of ammonium, GS activity in C. vulgaris was always higher when jointly immobilized and determined on a per‐cell basis. When jointly immobilized, only at an initial concentration of 8 mg · L?1 NH4+ was GDH activity per cell higher.  相似文献   

3.
  • Induced systemic resistance (ISR) is one of the indirect mechanisms of growth promotion exerted by plant growth‐promoting bacteria, and can be mediated by ethylene (ET). We assessed ET production and the expression of related genes in the Azospirillum–strawberry plant interaction.
  • Ethylene production was evaluated by gas chromatography in plants inoculated or not with A. brasilense REC3. Also, plants were treated with AgNO3, an inhibitor of ET biosynthesis; with 1‐aminocyclopropane‐1‐carboxylic acid (ACC), a precursor of ET biosynthesis; and with indole acetic acid (IAA). Plant dry biomass and the growth index were determined to assess the growth‐promoting effect of A. brasilense REC3 in strawberry plants. Quantitative real time PCR (qRT‐PCR) was performed to analyse relative expression of the genes Faetr1, Faers1 and Faein4, which encode ET receptors; Factr1 and Faein2, involved in the ET signalling pathway; Faacs1 encoding ACC synthase; Faaco1 encoding ACC oxidase; and Faaux1 and Faami1 for IAA synthesis enzymes.
  • Results showed that ET acts as a rapid and transient signal in the first 12 h post‐treatment. A. brasilense REC3‐inoculated plants had a significantly higher growth index compared to control plants. Modulation of the genes Faetr1, Faers1, Faein4, Factr1, Faein2 and Faaco1 indicated activation of ET synthesis and signalling pathways. The up‐regulation of Faaux1 and Faami1 involved in IAA synthesis suggested that inoculation with A. brasilense REC3 induces production of this auxin, modulating ET signalling.
  • Ethylene production and up‐regulation of genes associated with ET signalling in strawberry plants inoculated with A. brasilense REC3 support the priming activation characteristic of ISR. This type of resistance and the activation of systemic acquired resistance previously observed in this interaction indicate that both are present in strawberry plants, could act synergistically and increase protection against pathogens.
  相似文献   

4.
The production of phytohormones by plant-growth promoting rhizobacteria is considered to be an important mechanism by which these bacteria promote plant growth. In this study the importance of indole-3-acetic acid (IAA) produced by Azospirillum brasilense Sp245 in the observed plant growth stimulation was investigated by using Sp245 strains genetically modified in IAA production. Firstly wild-type A. brasilense Sp245 and an ipdC knock-out mutant which produces only 10% of wild-type IAA levels (Vande Broek et al., J Bacteriol 181:1338–1342, 1999) were compared in a greenhouse inoculation experiment for a number of plant parameters, thereby clearly demonstrating the IAA effect in plant growth promotion. Secondly, the question was addressed whether altering expression of the ipdC gene, encoding the key enzyme for IAA biosynthesis in A. brasilense, could also contribute to plant growth promotion. For that purpose, the endogenous promoter of the ipdC gene was replaced by either a constitutive or a plant-inducible promoter and both constructs were introduced into the wild-type strain. Based on a greenhouse inoculation experiment it was found that the introduction of these recombinant ipdC constructs could further improve the plant-growth promoting effect of A. brasilense. These data support the possibility of constructing Azospirillum strains with better performance in plant growth promotion.  相似文献   

5.
Rice leaves accumulate serotonin in response to infection by Bipolaris oryzae. The leaves of the sl mutant, which is deficient in the gene encoding tryptamine 5‐hydroxylase, accumulate tryptamine instead of serotonin upon infection by B. oryzae. Because tryptamine is a possible precursor of indole‐3‐acetic acid (IAA), we investigated the accumulation of IAA in sl leaves infected with B. oryzae. Liquid chromatography coupled with tandem mass spectrometry analysis indicated that IAA accumulated at approximately 1.5 μmol/gFW in the leaves of sl mutant. This accumulation was suppressed by 95% by the treatment with the tryptamine decarboxylase inhibitor, (S)‐α‐(fluoromethyl)tryptophan, at 100 μm , indicating that tryptamine served as the precursor of IAA. The accumulation of IAA was not reproduced by treatment with CuCl2 or by exogenous feeding of tryptamine. Furthermore, inoculation of Magnaporthe grisea induced only a lower level of IAA accumulation. On the other hand, B. oryzae produced IAA in culture media containing tryptamine. These findings strongly suggested that the metabolism of tryptamine by B. oryzae was responsible for IAA accumulation in the leaves of the sl mutant. Serotonin added to the culture media was also converted into 5‐hydroxyindole‐3‐acetic acid (5HIAA) at a rate similar to that of tryptamine. Considering that wild‐type rice leaves accumulate serotonin for defensive purposes, reducing the concentration of serotonin by conversion into 5HIAA may be significant as a detoxification process in the interaction between B. oryzae and rice.  相似文献   

6.
The plant-growth-promoting bacterium Azospirillum brasilense is able to associate with the microalgae Chlorella sorokiniana. Attachment of A. brasilense increases the metabolic performances of the microalgae. Recent genome analyses have revealed that the A. brasilense Az39 genome contains two complete sets of genes encoding type VI secretion systems (T6SS), including the T6SS1 that is induced by the indole-3-acetic acid (IAA) phytohormone. The T6SS is a multiprotein machine, widespread in Gram-negative bacteria, that delivers protein effectors in both prokaryotic and eukaryotic cells. Here we show that the A. brasilense T6SS is required for Chlorella-Azospirillum synthetic mutualism. Our data demonstrate that the T6SS is an important determinant to promote production of lipids, carbohydrates and photosynthetic pigments by the microalgae. We further show that this is likely due to the role of the T6SS during the attachment stage and for the production of IAA phytohormones. Finally, we demonstrate that the A. brasilense T6SS provides antagonistic activities against a number of plant pathogens such as Agrobacterium, Pectobacterium, Dickeya and Ralstonia species in vitro, suggesting that, in addition to promoting growth, A. brasilense might confer T6SS-dependent bio-control protection to microalgae and plants against bacterial pathogens.  相似文献   

7.
The formation of nitrogen‐fixing nodules on legume hosts is a finely tuned process involving many components of both symbiotic partners. Production of the exopolysaccharide succinoglycan by the nitrogen‐fixing bacterium Sinorhizobium meliloti 1021 is needed for an effective symbiosis with Medicago spp., and the succinyl modification to this polysaccharide is critical. However, it is not known when succinoglycan intervenes in the symbiotic process, and it is not known whether the plant lysin‐motif receptor‐like kinase MtLYK10 intervenes in recognition of succinoglycan, as might be inferred from work on the Lotus japonicus MtLYK10 ortholog, LjEPR3. We studied the symbiotic infection phenotypes of S. meliloti mutants deficient in succinoglycan production or producing modified succinoglycan, in wild‐type Medicago truncatula plants and in Mtlyk10 mutant plants. On wild‐type plants, S. meliloti strains producing no succinoglycan or only unsuccinylated succinoglycan still induced nodule primordia and epidermal infections, but further progression of the symbiotic process was blocked. These S. meliloti mutants induced a more severe infection phenotype on Mtlyk10 mutant plants. Nodulation by succinoglycan‐defective strains was achieved by in trans rescue with a Nod factor‐deficient S. meliloti mutant. While the Nod factor‐deficient strain was always more abundant inside nodules, the succinoglycan‐deficient strain was more efficient than the strain producing only unsuccinylated succinoglycan. Together, these data show that succinylated succinoglycan is essential for infection thread formation in M. truncatula, and that MtLYK10 plays an important, but different role in this symbiotic process. These data also suggest that succinoglycan is more important than Nod factors for bacterial survival inside nodules.  相似文献   

8.
Aims: To assess the applicability of sequence characterized amplified region (SCAR) markers obtained from BOX, ERIC and RAPD fragments to design primers for real‐time PCR quantification of the phytostimulatory maize inoculants Azospirillum brasilense UAP‐154 and CFN‐535 in the rhizosphere. Methods and Results: Primers were designed based on strain‐specific SCAR markers and were screened for successful amplification of target strain and absence of cross‐reaction with other Azospirillum strains. The specificity of primers thus selected was verified under real‐time PCR conditions using genomic DNA from strain collection and DNA from rhizosphere samples. The detection limit was 60 fg DNA with pure cultures and 4 × 103 (for UAP‐154) and 4 × 104 CFU g?1 (for CFN‐535) in the maize rhizosphere. Inoculant quantification was effective from 104 to 108 CFU g?1 soil. Conclusion: BOX‐based SCAR markers were useful to find primers for strain‐specific real‐time PCR quantification of each A. brasilense inoculant in the maize rhizosphere. Significance and Impact of the Study: Effective root colonization is a prerequisite for successful Azospirillum phytostimulation, but cultivation‐independent monitoring methods were lacking. The real‐time PCR methods developed here will help understand the effect of environmental conditions on root colonization and phytostimulation by A. brasilense UAP‐154 and CFN‐535.  相似文献   

9.
10.
The plant growth‐promoting strain REC3 of Azospirillum brasilense, isolated from strawberry roots, prompts growth promotion and systemic protection against anthracnose disease in this crop. Hence, we hypothesised that A. brasilense REC3 can induce different physiological, structural and molecular responses in strawberry plants. Therefore, the aim of this work was to study these traits activated in Azospirillum‐colonised strawberry plants, which have not been assessed until now. Healthy, in vitro micropropagated plants were root‐inoculated with REC3 under hydroponic conditions; root and leaf tissues were sampled at different times, and oxidative burst, phenolic compound content, malondialdehyde (MDA) concentration, callose deposition, cell wall fortification and gene expression were evaluated. Azospirillum inoculation enhanced levels of soluble phenolic compounds after 12 h post‐inoculation (hpi), while amounts of cell wall bound phenolics were similar in inoculated and control plants. Other early responses activated by REC3 (at 24 hpi) were a decline of lipid peroxidation and up‐regulation of strawberry genes involved in defence (FaPR1), bacterial recognition (FaFLS2) and H2O2 depuration (FaCAT and FaAPXc). The last may explain the apparent absence of oxidative burst in leaves after bacterial inoculation. Also, REC3 inoculation induced delayed structural responses such as callose deposition and cell wall fortification (at 72 hpi). Results showed that A. brasilense REC3 is capable of exerting beneficial effects on strawberry plants, reinforcing their physiological and cellular characteristics, which in turns contribute to improve plant performance.  相似文献   

11.
Heterotrophic growth of microalgae presents significant economic advantages over the more common autotrophic cultivation. The efficiency of growth and nitrogen, phosphorus, and glucose uptake from synthetic wastewater was compared under heterotrophic, autotrophic, and mixotrophic regimes of Chlorella vulgaris Beij. immobilized in alginate beads, either alone or with the bacterium Azospirillum brasilense. Heterotrophic cultivation of C. vulgaris growing alone was superior to autotrophic cultivation. The added bacteria enhanced growth only under autotrophic and mixotrophic cultivations. Uptake of ammonium by the culture, yield of cells per ammonium unit, and total volumetric productivity of the culture were the highest under heterotrophic conditions when the microalga grew without the bacterium. Uptake of phosphate was higher under autotrophic conditions and similar under the other two regimes. Positive influence of the addition of A. brasilense was found only when light was supplied (autotrophic and mixotrophic), where affinity to phosphate and yield per phosphate unit were the highest under heterotrophic conditions. The pH of the culture was significantly reduced in all regimes where glucose was consumed, similarly in heterotrophic and mixotrophic cultures. It was concluded that the heterotrophic regime, using glucose, is superior to autotrophic and mixotrophic regimes for the uptake of ammonium and phosphate. Addition of A. brasilense positively affects the nutrient uptake only in the two regimes supplied with light.  相似文献   

12.
Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth‐promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress‐related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col‐0 and aba2‐1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro‐grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild‐type Col‐0 and on the mutant aba2‐1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col‐0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought.  相似文献   

13.
W. Zimmer  H. Bothe 《Plant and Soil》1988,110(2):239-247
A simple model system was designed to detect positive effects ofAzospirillum on the root growth of cereals. Cultures ofA. brasilense Sp7 andA. lipoferum Sp59 did not excrete gibberellins and cytokinins in the logarithmic and in the early stationary growth phase. Indoleacetic acid (IAA) was formed, however, only in the stationary phase of the cultures. The addition of D,L-tryptophan to the medium enhanced the formation of IAA. A further, still unidentified substance was produced byAzospirillum under denitrifying conditions in the logarithmic growth phase. The substance was almost twice as active as IAA in increasing the wet weight of wheat root segments. It is suggested that this unidentified substance is the major stimulus affecting the growth of cereals.Dedicated to Professor E.-G. Niemann, Hannover, on the occasion of his 60th birthday.  相似文献   

14.
Throughout arable land that was devoted to chickpea (Cicer arietinum L. (Family: Leguminosae) production, Ascochyta blight (Ascochyta rabiei (Pass.) L. (Order: Sphaeriales; Family: Mycosphaerellaceae) is a widespread disease that would lead to significant loss of chickpea yield. This study's purpose was to explain the responses of a resistant chickpea cultivar (ICC 12004) and a susceptible cultivar (Bivanij) in terms of disease resistance, disease symptoms appearance and expression pattern of two defence‐related genes (DEF0442 and Snakin2) after the Azospirillum brasilense seeds inoculation. In this research, the Snakin2 gene expression was affected by Azospirillum inoculation. The gene expression has been enhanced in plants inoculated with Azospirillum in both cultivars in comparison with non‐inoculated plants, but this change in ICC 12004 and Bivanij were significant and non‐significant, respectively. Although, Azospirillum would up regulate the DEF0422 gene expression in ICC 12004, but it would down regulate the expression of this gene in Bivanij. A. brasilense inoculation decreased the A. rabiei disease severity, regardless of the chickpea cultivar. Bivanij still could be classified as susceptible, even if treated with A. brasilense.  相似文献   

15.
Azospirillum sp. is one of the most studied genera of plant growth-promoting rhizobacteria (PGPR). The ability of Azospirillum sp. to promote plant growth has been associated with its ability to produce several phytohormones, such as auxins, gibberellins and cytokinins, but mainly indole-3-acetic acid (IAA). It has been propoosed that the production of IAA explains the positive effects of co-inoculation with Azospirillum sp. on the rhizobia-legume symbiosis. In this study, we constructed an IAA-deficient mutant of A. brasilense Az39 (ipdC ? ) by using a restriction-free cloning method. We inoculated soybean seeds with 1·106 cfu·seed?1 of Bradyrhizobium japonicum E109 and co-inoculating leaves at the V3 stage with 1·108 cfu.plant?1 of A. brasilense Az39 wt or ipdC ? or inoculated leaves with 20 μg.plant?1 synthetic IAA. The results confirmed soybean growth promotion as there was increased total plant and root length, aerial and root dry weight, number of nodules on the primary root, and an increase in the symbiosis established with B. japonicum E109. Nodule weight also increased after foliar co-inoculation with the IAA- producer A. brasilense Az39. The exogenous application of IAA decreased aerial and root length, as well as the number of nodules on primary roots in comparison with the Az39 wt strain. These results allow us to propose a biological model of response to foliar co-inoculation of soybean with IAA-producing rhizobacteria. This model clearly shows that both the presence of microorganism as part of the colonization process and the production of IAA in situ are co-responsible, via plant signaling molecules, for the positive effects on plant growth and symbiosis establishment.  相似文献   

16.
Azospirillum brasilense strains, CDJA and A40, capable of growing at sub-optimal temperature were tagged with stable chromogenic marker Tn5-lacZ. Mutants were screened for plant growth promoting activities at 20, 22, 25, 30 and 37 °C. Mutants MC48 and MA3 were found to fix nitrogen upto 85% and produced indole acetic acid (IAA) and siderophore in isogenic manner to their respective wild type strains, CDJA and A40, at sub-optimal temperatures. Co-inoculation of mutants with their respective parent (1:1 ratio) to the wheat revealed that colonization potential of the mutants was affected greatly. Tn5-lacZ tagged mutants MC48 and MA3 were found isogenic to their respective wild type Azospirillum strain, with regards to plant growth promoting activities and root colonization ability. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Summary We report the successful mutagenesis of Azospirillum brasilense 29710 Rif Sm with transposon Tn5. The narrow host-range plasmid pGS9 (p15A replicon), which possesses broad host-range N-type transfer genes, was used as the suicide vehicle to deliver Tn5 in Azospirillum. Out of 900 colonies tested, 0.8% proved to be auxotrophic. One mutant altered in indoleacetic acid (auxin) biosynthesis was isolated and, in addition, three mutants completely defective in nitrogen fixation (nif) were obtained. All the mutants tested contained a single copy of Tn5 integrated randomly in the genome. The Tn5-mutagenized EcoRI fragments were cloned from the three Nif- mutants. Physical analysis of cloned DNA showed that Tn5 was present on a different EcoRI fragment in each case, ranging in size from 15–17 kb. The nitrogenase structural genes (nifHDK) in A. brasilense 29710 Rif Sm were localized on a 6.7 kb EcoRI fragment. We found that Tn5 is not inserted in the nifHDK genes in the Nif- mutants reported here. Site-directed mutagenesis using the cloned, Tn5-containing DNA from mutant Nif27(pMS188), produced a large number of Nif- transconjugants of the A. brasilense 29710 Rif wild-type strain, showing the linkage between Tn5 insertion and the Nif- phenotype. This is the first time that transposon-mutagenized auxotrophic, Nif- and other mutants have been available for genetic analysis in Azospirillum. This should greatly facilitate the cloning and mapping of genes involved in nitrogen fixation as well as in many other phenotypic characteristics of Azospirillum.  相似文献   

18.
In synthetic wastewater, growth and phosphorus absorption by two species of microalgae, Chlorella sorokiniana and Chlorella vulgaris, and in domestic wastewater by C. sorokiniana significantly enhanced after a starvation period of 3 days in saline solution, combined with co-immobilization with the microalgae growth-promoting bacterium (MGPB) Azospirillum brasilense Cd in alginate beads. Starvation of 5 days negatively affected the subsequent growth of C. vulgaris, but not of C. sorokiniana in fresh wastewater. Starvation of immobilized cultures of microalgae separately or microalgae with bacteria, followed by returning the immobilized cultures to the same wastewater did not enhance phosphorus absorption. However, a starvation period followed by subsequent submersion of the cultures in fresh wastewater allowed the continuation of phosphorus absorption. The best phosphorus removal treatment from a batch of synthetic or domestic wastewater was with tandem treatments of wastewater treatment with pre-starved, co-immobilized microalgae and replacement of this culture, after one cycle of phosphorus removal, with a new, similarly starved culture. This combination treatment with two cultures was capable of removing up to 72% of phosphorus from the wastewater. There was a direct correlation between the initial load of phosphorus in the domestic wastewater and the efficiency level of removal, being highest at higher phosphorus loads in co-immobilized cultures. This occurred for both immobilized and co-immobilized cultures. Further, the results showed that negative effects of starving the microalgae were mitigated by the application of the MGPB A. brasilense Cd. This is the first report of this capacity in Azospirillum sp. on a single-cell plant. This study showed that starvation periods, combined with co-immobilization with MGPB, have synergistic effects on absorption of phosphorus from wastewater and merits consideration in designing future biological treatments of wastewater.  相似文献   

19.
High‐temperature bioconversion of lignocellulose into fermentable sugars has drawn attention for efficient production of renewable chemicals and biofuels, because competing microbial activities are inhibited at elevated temperatures and thermostable cell wall degrading enzymes are superior to mesophilic enzymes. Here, we report on the development of a platform to produce four different thermostable cell wall degrading enzymes in the chloroplast of Chlamydomonas reinhardtii. The enzyme blend was composed of the cellobiohydrolase CBM3GH5 from C. saccharolyticus, the β‐glucosidase celB from P. furiosus, the endoglucanase B and the endoxylanase XynA from T. neapolitana. In addition, transplastomic microalgae were engineered for the expression of phosphite dehydrogenase D from Pseudomonas stutzeri, allowing for growth in non‐axenic media by selective phosphite nutrition. The cellulolytic blend composed of the glycoside hydrolase (GH) domain GH12/GH5/GH1 allowed the conversion of alkaline‐treated lignocellulose into glucose with efficiencies ranging from 14% to 17% upon 48h of reaction and an enzyme loading of 0.05% (w/w). Hydrolysates from treated cellulosic materials with extracts of transgenic microalgae boosted both the biogas production by methanogenic bacteria and the mixotrophic growth of the oleaginous microalga Chlorella vulgaris. Notably, microalgal treatment suppressed the detrimental effect of inhibitory by‐products released from the alkaline treatment of biomass, thus allowing for efficient assimilation of lignocellulose‐derived sugars by C. vulgaris under mixotrophic growth.  相似文献   

20.
A. Hartmann 《Plant and Soil》1988,110(2):225-238
The nitrogenase activity ofAzospirillum spp. is efficiently regulated by environmental factors. InA. brasilense andA. lipoferum a rapid switch off of nitrogenase activity occurs after the addition of ammonium chloride. As in photosynthetic bacteria, a covalent modification of nitrogenase reductase (Fe-protein) is involved. InA. amazonense, a non-covalent mechanism causes only a partial inhibition of nitrogenase activity after ammonium chloride is added. In anaerobic conditions, nitrogenase reductase is also switched off by a covalent modification inA. brasilense andA. lipoferum. Short-time exposure ofAzospirillum to increased oxygen levels causes a partially reversible inhibition of nitrogenase activity, but no covalent modification is involved.Azospirillum spp. show variations in their oxygen tolerance. High levels of carotenoids confer a slightly improved oxygen tolerance. Certain amino acids (e. g. glutamate, aspartate, histidine and serine) affect growth and nitrogen fixation differently inAzospirillum spp. Amino acids may influence growth and nitrogen fixation ofAzospirillum in the association with plants.Azospirillum brasilense andA. halopraeferens are the more osmotolerant species. They utilize most amino acids poorly and accumulate glycine betaine, which also occurs in osmotically stressed grasses as a compatible solute to counteract osmotic stress. Nitrogen fixation is stimulated by glycine betaine and choline. Efficient iron acquisition is a prerequisite for competitive and aerotoleran growth and for high nitrogenase activity.Azospirillum halopraeferens andA. amazonense assimilate iron reasonably well, whereas growth of someA. brasilense andA. lipoferum strains is severely inhibited by iron limitation and by competition with foreign microbial iron chelators. However, growth of certain iron-limitedA. brasilense strains is stimulated by the phytosiderophore mugineic acid. Thus, various plant-derived substances may stimulate growth and nitrogen fixation ofAzospirillum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号