首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Predation by cyclopoid copepods is an important factor affecting zooplankton communities in freshwater habitats. Experiments provide strong evidence of the role of selective predation by cyclopoid copepods in structuring zooplankton communities. To assess the predation impact of a cyclopoid copepod, Mesocyclops pehpeiensis, we conducted a mesocosm experiment using 20-l polyethylene tanks in which the density of the predator and the food available to herbivorous zooplankton varied. M. pehpeiensis had a notable but selective effect on the zooplankton community. The population of a small cladoceran, Bosmina fatalis was affected negatively, but M. pehpeiensis did not have any apparent impact on the population dynamics of another Bosmina species, B. longirostris. On the other hand, the population of small rotifers responded positively to the presence of M. pehpeiensis, and their densities increased in mesocosms with a high density of M. pehpeiensis. It seems that suppression of B. fatalis by M. pehpeiensis predation indirectly affected rotifers by releasing them from competition with B. fatalis. The results suggest that copepod predation is a powerful factor regulating zooplankton communities directly and indirectly.  相似文献   

2.
1. Based on two mesocosm experiments and 10 in vitro predation experiments, this work aimed to evaluate the impact of nutrient supply and Chaoborus predation on the structure of the zooplankton community in a small reservoir in Côte d'Ivoire. 2. During the first mesocosm experiment (M1), P enrichment had no effect on phytoplankton biomass (chlorophyll a) but significantly increased the biomass of some herbivorous zooplankton species (Filinia sp, Ceriodaphnia affinis). During the second experiment (M2), N and P enrichment greatly increased phytoplankton biomass, rotifers and cladocerans (C. affinis, C. cornuta, Moina micrura and Diaphanosoma excisum). In both experiments, nutrient addition had a negative impact on cyclopoid copepods. 3. Larger zooplankton, such as cladocerans or copepodites and adults of Thermocyclops sp., were significantly reduced in enclosures with Chaoborus in both mesocosm experiments, whereas there was no significant reduction of rotifers and copepod nauplii. This selective predation by Chaoborus shaped the zooplankton community and modified its size structure. In addition, a significant Chaoborus effect on chlorophyll a was shown in both experiments. 4. The preference of Chaoborus for larger prey was confirmed in the predation experiments. Cladocerans D. excisum and M. micrura were the most selected prey. Rotifer abundance was not significantly reduced in any of the 10 experiments performed. 5. In conclusion, both bottom‐up and top‐down factors may exert a structuring control on the zooplankton community. Nutrients favoured more strictly herbivorous taxa and disadvantaged the cyclopoid copepods. Chaoborus predation had a strong direct negative impact on larger crustaceans, favoured small herbivores (rotifer, nauplii) and seemed to cascade down to phytoplankton.  相似文献   

3.
4.
Stellan F. Hamrin 《Hydrobiologia》1983,101(1-2):121-128
Vendace (Coregonus albula, L.) is in the southern part of its distribution area during the summer period restricted to hypolimnion. Food is dominated by Bosmina coregoni and Daphnia sp. The selectivity index is highest for large cladocerans and large copepods.The pelagic crustacean fauna in vendace lakes is dominated by small species like Bosmina coregoni, Daphnia cristata, Thermocyclops and Mesocyclops sp. and Eudiaptomus sp. During periods of maximum vendace abundance only Bosmina coregoni is left of the cladocerans, while the abundance of cyclopoid copepods increases.  相似文献   

5.
Planktivorous fish can exert strong top‐down control on zooplankton communities. By incorporating different feeding strategies, from selective particulate feeding to cruising filter feeding, fish species target distinct prey. In this study, we investigated the effects of two species with different feeding strategies, the three‐spined stickleback (Gasterosteus aculeatus (L.)) and roach (Rutilus rutilus (L.)), on a low‐diversity brackish water zooplankton community using a 16‐day mesocosm experiment. The experiment was conducted on a small‐bodied spring zooplankton community in high‐nutrient conditions, as well as a large‐bodied summer community in low‐nutrient conditions. Effects were highly dependent on the initial zooplankton community structure and hence seasonal variation. In a small‐bodied community with high predation pressure and no dispersal or migration, the selective particulate‐feeding stickleback depleted the zooplankton community and decreased its diversity more radically than the cruising filter‐feeding roach. Cladocerans rather than copepods were efficiently removed by predation, and their removal caused altered patterns in rotifer abundance. In a large‐bodied summer community with initial high taxonomic and functional diversity, predation pressure was lower and resource availability was high for omnivorous crustaceans preying on other zooplankton. In this community, predation maintained diversity, regardless of predator species. During both experimental periods, predation influenced the competitive relationship between the dominant calanoid copepods, and altered species composition and size structure of the zooplankton community. Changes also occurred to an extent at the level of nontarget prey, such as microzooplankton and rotifers, emphasizing the importance of subtle predation effects. We discuss our results in the context of the adaptive foraging mechanism and relate them to the natural littoral community.  相似文献   

6.
Freshwater Copepods and Rotifers: Predators and their Prey   总被引:1,自引:0,他引:1  
Three main groups of planktonic animals inhabit the limnetic zone of inland waters and compete for common food resources: rotifers, cladocerans and copepods. In addition to competition, their mutual relationships are strongly influenced by the variable, herbivorous and carnivorous feeding modes of the copepods. Most copepod species, at least in their later developmental stages, are efficient predators. They exhibit various hunting and feeding techniques, which enable them to prey on a wide range of planktonic animals from protozoans to small cladocerans. The rotifers are often the most preferred prey. The scope of this paper is limited to predation of freshwater copepods on rotifer prey. Both cyclopoid and calanoid copepods (genera Cyclops, Acanthocyclops, Mesocyclops, Diacyclops, Tropocyclops, Diaptomus, Eudiaptomus, Boeckella, Epischura and others) as predators and several rotifer species (genera Synchaeta, Polyarthra, Filinia, Conochilus, Conochiloides, Brachionus, Keratella, Asplanchna and others) as prey are reported in various studies on the feeding relationships in limnetic communities. Generally, soft-bodied species are more vulnerable to predation than species possessing spines or external structures or loricate species. However, not only morphological but also behavioural characteristics, e.g., movements and escape reactions, and temporal and spatial distribution of rotifer species are important in regulating the impact of copepod predation. The reported predation rates are high enough to produce top-down control and often achieve or even exceed the reproductive rates of the rotifer populations. These findings are discussed and related to the differences between the life history strategies of limnetic rotifer species, with their ability to quickly utilize seasonally changing food resources, and adjust to the more complicated life strategies of copepods.  相似文献   

7.
The predation impact of the larvae of pond smelt Hypomesus transpacificus nipponensis on a zooplankton community was studied using mesocosms. The fish significantly depressed the abundances of copepod nauplii and rotifers, especially Hexarthra mira. The vulnerabilities of these prey might be determined by their swimming behavior and population density, suggesting that larval fish selectively prey on zooplankton that have a high encounter rate with the predator. The larvae did not have a negative effect on the densities of cladocerans, but fish predation altered the cladoceran community structure from the dominance of B. longirostris to that of B. fatalis. This result suggests that larval fish predation is an important factor that shifts the species composition of Bosmina in some lakes, the shift occurring in the season when fish larvae are abundant. Our results have shown that predation by the larval fish would control not only the abundance, but also the community structure of the small-sized zooplankton prey.  相似文献   

8.
As a recent invader of North American lakes, Bythotrephes longimanus has induced large changes in crustacean zooplankton communities through direct predation effects. Here we demonstrate that Bythotrephes can also have indirect food web effects, specifically on rotifer fauna. In historical time series data, the densities of the colonial rotifer Conochilus unicornis significantly increased after Bythotrephes invasion in Harp Lake, Ontario. No such changes were observed in a non-invaded reference lake, the nearby Red Chalk Lake. Evidence for two mechanisms explaining the Conochilus increase was examined based on changes to the crustacean zooplankton community over time. Rapid and severe declines in several herbivorous species of cladoceran zooplankton after Bythotrephes detection indicated a decrease in exploitative competition pressure on Conochilus. Secondly, a later and significant decline to virtual extinction of native invertebrate predators (Mesocyclops and Leptodora) could account for the observed Conochilus increase which also began 1–2 years after invasion by Bythotrephes. Ultimately, it appears that both reduced competition followed by a loss of native invertebrate predators were necessary to lead to the large Conochilus densities observed following invader establishment. From this analysis of long-term community data, it appears that Bythotrephes has important indirect, as well as direct, food web effects in newly invaded North American lakes with implications for trophic relationships.  相似文献   

9.
Fauvet  Guillaume  Claret  Cécile  Marmonier  Pierre 《Hydrobiologia》2001,464(1-3):121-131
An enclosure study was conducted in Ranger Lake in south-central Ontario, Canada from 4 July to 5 August 1997 to determine predation effects of the larvae of the phantom midge fly Chaoboruson the zooplankton community. Zooplankton assemblages were established in 12 enclosures (2 m in diameter, 7.5 m deep). Three densities of fourth-instar Chaoborus trivittatus (0 l–1, 0.1 l–1 and 0.5 l–1) were introduced as predator treatments to the enclosures. Temperature, dissolved oxygen and zooplankton community composition were monitored for six weeks. To determine if the zooplankton community composition changed, a repeated measures multivariate analysis was performed on percent biomass of Bosmina and calanoid copepods. There were no significant differences in mean taxon percent biomass among predator treatments. There were significant differences in mean taxon percent biomass between water layers (epilimnion and metalimnion). There were also significant differences in lengths of Bosmina and calanoid copepods among predator treatments at the end of the experiment. Crop content analysis of C. trivittatusshowed that Bosmina constituted 88–98% of the prey items found in the crops. These results demonstrate that the use of deep enclosures, a Chaoborus species which vertically migrates, and lower natural densities of Chaoborus may provide prey with an important natural refuge from predation and so allow a more accurate determination of the predation impact of Chaoborus trivittatusin temperate lakes where fish control Chaoborus densities.  相似文献   

10.
Gophen  M. 《Hydrobiologia》1988,167(1):375-379
Long period analysis of Copepoda populations in Lake Kinneret indicated significant reductions in total biomass and production as well as densities of nauplii and adult stages, particularly females. The reduction of adult Mesocyclops sp. was statistically significant, but that of Thermocyclops sp. was not. Annual averages of eggs/female values and densities of copepodite stages did not show significant changes. Concentrations of adult Thermocyclops sp. became higher relative to the larger genus Mesocyclops sp. It is suggested that densities of large copepods were affected by intensification of predation pressure by particulate feeding fishes. The densities of nauplii were probably reduced by increased predation pressure of filter feeding fish.  相似文献   

11.
The turbellarian predator Mesostoma ehrenbergii, a common inhabitant of fishless ponds of northern Patagonia, can consume prey larger than 1 mm. Because the feeding strategy of M. ehrenbergii includes mucus trapping and external digestion, this predator may exploit a broad range of prey sizes. We hypothesize that M. ehrenbergii could exert a strong effect on zooplankton composition and body size spectra in Patagonian fishless ponds. We investigated this hypothesis by analyzing the crustacean zooplankton composition and size spectra in five fishless ponds of northern Patagonia, and we carried out experiments to assess predation rates of M. ehrenbergii on potential prey species from 0.8 mm to 6 mm. These ponds were colonized by macrophytes, which favored habitat heterogeneity, especially in the smaller ponds that had higher species richness. The surveyed ponds showed distinctive crustacean zooplankton assemblages and sizes, but all were dominated by calanoid copepods of the genus Boeckella. Our results indicated that M. ehrenbergii consumed the whole size range of offered prey, from ∼0.8 mm (Ceriodaphnia dubia) to ∼6 mm (Parabroteas sarsi). Predation rates were higher for intermediate‐bodied copepods (∼1.5 mm) and C. dubia (0.8 mm), but we did not find conclusive evidence that variations in size spectra of crustacean zooplankton are a result of M. ehrenbergii predation. We suggest that an interaction between prey body size and its evasion tactic might be important to determine the true effect Mesostoma on zooplankters. The structural complexity created by macrophytes in Patagonian fishless ponds may also help account for the lack of a strong predation effect of Mesostoma in the field survey. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
1. Using two‐ and three‐dimensional video recordings, we examined the steps involved in predation that lead to the differential vulnerability of three sympatric rotifer sibling species (Brachionus plicatilis, B. ibericus and B. rotundiformis) to a co‐occurring, predatory, calanoid copepod (Arctodiaptomus salinus). 2. Brachionus rotundiformis, the smallest prey tested, was the most vulnerable with the highest encounter rate, probability of attack, capture and ingestion, and the lowest handling time. 3. Comparison of our results with those of a previous study shows that A. salinus is a more efficient predator than a co‐occurring cyclopoid copepod (Diacyclops bicuspidatus odessanus) feeding on these same rotifer species. However, despite its higher capture rates, A. salinus seems to be less selective than D. b. odessanus based on attack distances and prey handling times. 4. The differential vulnerability to both calanoid and cyclopoid copepod predation can help explain the coexistence and seasonal succession of these co‐occurring rotifer species.  相似文献   

13.
In order to estimate predation risk in nature, two basic components of predation need to be quantified: prey vulnerability, and density risk. Prey vulnerability can be estimated from clearance rates obtained from enclosure experiments with and without predators. Density risk is a function of predator density, and the spatial and temporal overlap of the predator and prey populations. In the current study we examine the importance of the vertical component of overlap in making accurate estimates of predation risk from the invertebrate predator Mesocyclops edax on rotifer versus crustacean prey. The results indicate that assumptions of uniform predator and prey densities cause a significant underestimation of predation risk for many crustacean prey due to the coincident vertical migration of these prey with the predator. The assumption of uniformity is more reasonable for estimating predation risk for most rotifer prey.  相似文献   

14.
The Kosi coastal lake system, a chain of four interconnected basins, is located in the subtropical north-eastern corner of South Africa. Little information is available on zooplankton of the system and the main aim of this study is to report on zooplankton samples collected during 2002 and 2003. The set of samples consists of seasonal, subsurface mesozooplankton samples that were collected during nighttime in each of the lakes. A well-developed salinity gradient was evident along the interconnected lakes in the subsurface water during all seasons, ranging from freshwater in the upper lake Amanzamnyama to a maximum of 22 recorded in Lake Makhawulani. The zooplankton community structures of the lakes reflected the salinity gradient of the system, with some coastal marine taxa recorded in the lakes closer to the mouth and only freshwater taxa recorded in Lake Amanzamnyama. Mesozooplankton diversity and abundance were relatively low compared to other estuarine systems along the eastern coast of South Africa. The dominant taxa were calanoid copepods Acartiella natalensis and Pseudodiaptomus stuhlmanni and the mysid Mesopodopsis africana in the lower lakes, whereas cyclopoids Mesocyclops sp. and Thermocyclops sp. dominated the freshwater lake Amanzamnyama.  相似文献   

15.
Cyanobacterial chemical warfare affects zooplankton community composition   总被引:5,自引:0,他引:5  
1. Toxic algal blooms widely affect our use of water resources both with respect to drinking water and recreation. However, it is not only humans, but also organisms living in freshwater and marine ecosystems that may be affected by algal toxins. 2. In order to assess if cyanobacterial toxins affect the composition of natural zooplankton communities, we quantified the temporal fluctuations in microcystin concentration and zooplankton community composition in six lakes. 3. Microcystin concentrations generally showed a bimodal pattern with peaks in early summer and in autumn, and total zooplankton biomass was negatively correlated with microcystin concentrations. Separating the zooplankton assemblages into finer taxonomic groups revealed that high microcystin concentrations were negatively correlated with Daphnia and calanoid copepods, but positively correlated with small, relatively inefficient phytoplankton feeders, such as cyclopoid copepods, Bosmina and rotifers. 4. In a complementary, mechanistic laboratory experiment using the natural phytoplankton communities from the six lakes, we showed that changes in in situ levels of microcystin were coupled with reduced adult size and diminished juvenile biomass in Daphnia. 5. We argue that in eutrophic lakes, large unselective herbivores, such as Daphnia, are ‘sandwiched’ between high fish predation and toxic food (cyanobacteria). In combination, these two mechanisms may explain why the zooplankton community in eutrophic lakes generally comprise small forms (e.g. rotifers and Bosmina) and selective raptorial feeders, such as cyclopoid copepods, whereas large, unselective herbivores, such as Daphnia, are rare. Hence, this cyanobacterial chemical warfare against herbivores may add to our knowledge on population and community dynamics among zooplankton in eutrophic systems.  相似文献   

16.
The impact of Pseudorasbora parva, a common zooplanktivorous fish species in Japan, on a zooplankton community was analyzed in experimental tanks, half of which were stocked with the fish. Different zooplankton species showed different responses to the introduction of the fish. In the presence of the fish, the populations of the large cladoceran Ceriodaphnia and the predatory copepod Mesocyclops were reduced, but the population of the herbivorous copepod Eodiaptomus and the small cladocerans Bosmina fatalis and Bosminopsis deitersi increased relative to the controls. The increase of Mesocyclops seen in the control tanks might have suppressed the populations of the small cladocerans, which are vulnerable to invertebrate predation. The results suggest that the population densities of the large prey items preferred by the fish, Ceriodaphnia and Mesocyclops, were controlled directly by fish predation, but the population densities of the smaller and less preferred zooplankton were controlled indirectly through the food-web cascade.  相似文献   

17.
Selective predation by planktivore fish appears to be an important regulatory factor of zooplankton communities, potentially causing large changes in species composition and size distributions within populations. In this study, prey preferences and size-selective predation on zooplankton by Arctic charr were examined in six subarctic lakes with Arctic charr as the dominant pelagic fish species. Most of the lakes had a zooplankton community dominated by copepods (Cyclops scutifer and Eudiaptomus graciloides), but the pelagic charr evidently selected cladoceran species (Bythotrephes longimanus, Daphnia sp. and Bosmina sp.), likely because the copepods have a higher mobility and evasiveness than the cladocerans. Furthermore, a strong size selection was also revealed for both Bosmina sp. and Daphnia sp., as individual prey from Arctic charr stomachs were exclusively larger than individuals sampled in the environment. Additionally, visibility due to size, morphology and pigmentation (egg-carrying females) was also a major factor for the selection of zooplankton prey. In conclusion, Arctic charr was found to be highly selective on zooplankton both in respect to species composition and individual size of Bosmina sp. and Daphnia sp.  相似文献   

18.
We report the species of crustacean zooplankton found in 19 resevoirs and ponds that were sampled at on at least two occasions in Aguascalientes State, Mexico, at a latitude of about 21°30 North Latitude. We collected a total of 33 cladoceran taxa, 15 calanoid and cyclopoid copepods, an Ergasilus copepod, 2 anostracans, one notostracan species and an amphipod. All these taxa had previously been reported in Mexico. As in more temperate areas, there was a significant correlation between the species richness and lake size. The species-area relationship for Aguascalientes was indistinguishable from that of more northerly lakes. The two most common associations of zooplankton species were (1) those small species that occurred with fish: Daphnia parvula, Diaphanosoma birgei, Leptodiaptomus siciloides, Mastigodiaptomus albuquerquensis, and Thermocyclops inversus, and (2) the large Daphnia schodleri that occurred with the predator Notonecta, in the absence of fish. With minor variations, these two associations also occur throughout temperate North America.  相似文献   

19.
Community level effects of predation by two invertebrate predators, the opossum shrimp (Neomysis intermedia), and the larva of the phantom midge (Chaoborus flavicans) were studied and compared. N. intermedia appeared abundantly in the shallow eutrophic Lake Kasumigaura and had a significant impact on the zooplankton community. The predation pressure by Neomysis was highest on cladocerans, followed by rotifers, and finally copepods. At high densities (maximum nearly 20 000 individuals m–2), Neomysis excluded almost all cladocerans, rotifers and copepods from the lake.Zooplankton communities were established in experimental ponds, into which C. flavicans was introduced. The predator's density was around 1 individual l–1, and was probably controled by cannibalism. Although Chaoborus larvae feed on various zooplankton species, their predation impact on zooplankton populations was markedly selective. They eliminated medium- and small-sized cladocerans and calanoid copepods from the ponds, but rotifers increased.Although the feeding selectivities of Neomysis and Chaoborus individuals were similar, the predation effects on zooplankton communities by the two predators were different.  相似文献   

20.
Cavalli  L.  Miquelis  A.  Chappaz  R. 《Hydrobiologia》2001,455(1-3):127-135
The examination of a yearly cycle of plankton density (rotifer and microcrustacean) and of 419 stomach contents of four species of salmonid fishes, arctic charr, Salvelinus alpinus, brown trout, Salmo trutta, rainbow trout, Onchorynchus mykiss and lake trout, Salvelinus namaycush, living in five high altitude lakes in the French Alps, shows an impact of abiotic variates and the effects of predation on the composition of zooplankton assemblages. The lakes studied may be divided in two groups. The colder, Muzelle and Puy Vachier, are characterised by a low level of food resources, an important impact of predation, and the near absence of planktonic crustaceans. The second group, consisting of Lakes Les Pisses, Petarel and Palluel, is characterised by a low density rotifer assemblage and a more abundant crustacean population controlled by a low level of fish predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号