共查询到20条相似文献,搜索用时 15 毫秒
1.
Donghui Wu Denise Muhlrad Matthew W Bowler Shimin Jiang Zhou Liu Roy Parker Haiwei Song 《Cell research》2014,24(2):233-246
The evolutionarily conserved Lsm1-7-Pat1 complex is the most critical activator of mRNA decapping in eukaryotic cells and plays many roles in normal decay, AU-rich element-mediated decay, and miRNA silencing, yet how Pat1 interacts with the Lsm1-7 complex is unknown. Here, we show that Lsm2 and Lsm3 bridge the interaction between the C-terminus of Pat1 (Pat1C) and the Lsm1-7 complex. The Lsm2-3-Pat1C complex and the Lsm1-7-Pat1C complex stimulate decapping in vitro to a similar extent and exhibit similar RNA-binding preference. The crystal structure of the Lsm2-3-Pat1C complex shows that Pat1C binds to Lsm2-3 to form an asymmetric complex with three Pat1C molecules surrounding a heptameric ring formed by Lsm2-3. Structure-based mutagenesis revealed the importance of Lsm2-3-Pat1C interactions in decapping activation in vivo. Based on the structure of Lsm2-3-Pat1C, a model of Lsm1-7-Pat1 complex is constructed and how RNA binds to this complex is discussed. 相似文献
2.
The major pathway of eukaryotic mRNA decay involves deadenylation-dependent decapping followed by 5' to 3' exonucleolytic degradation. By examining interactions among mRNA decay factors, the mRNA, and key translation factors, we have identified a critical transition in mRNP organization that leads to decapping and degradation of yeast mRNAs. This transition occurs after deadenylation and includes loss of Pab1p, eIF4E, and eIF4G from the mRNA and association of the decapping activator complex, Lsm1p-7p, which enhances the coimmunoprecipitation of a decapping enzyme complex (Dcp1p and Dcp2p) with the mRNA. These results define an important rearrangement in mRNP organization and suggest that deadenylation promotes mRNA decapping by both the loss of Pab1p and the recruitment of the Lsm1p-7p complex. 相似文献
3.
4.
The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs 总被引:2,自引:2,他引:2 下载免费PDF全文
Decapping is a critical step in mRNA decay. In the 5'-to-3' mRNA decay pathway conserved in all eukaryotes, decay is initiated by poly(A) shortening, and oligoadenylated mRNAs (but not polyadenylated mRNAs) are selectively decapped allowing their subsequent degradation by 5' to 3' exonucleolysis. The highly conserved heptameric Lsm1p-7p complex (made up of the seven Sm-like proteins, Lsm1p-Lsm7p) and its interacting partner Pat1p activate decapping by an unknown mechanism and localize with other decapping factors to the P-bodies in the cytoplasm. The Lsm1p-7p-Pat1p complex also protects the 3'-ends of mRNAs in vivo from trimming, presumably by binding to the 3'-ends. In order to determine the intrinsic RNA-binding properties of this complex, we have purified it from yeast and carried out in vitro analyses. Our studies revealed that it directly binds RNA at/near the 3'-end. Importantly, it possesses the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs such that the former are bound with much higher affinity than the latter. These results indicate that the intrinsic RNA-binding characteristics of this complex form a critical determinant of its in vivo interactions and functions. 相似文献
5.
Activation of pre-messenger RNA (pre-mRNA) splicing requires 5′ splice site recognition by U1 small nuclear RNA (snRNA), which is replaced by U5 and U6 snRNA. Here we use crosslinking to investigate snRNA interactions with the 5′ exon adjacent to the 5′ splice site, prior to the first step of splicing. U1 snRNA was found to interact with four different 5′ exon positions using one specific sequence adjacent to U1 snRNA helix 1. This novel interaction of U1 we propose occurs before U1-5′ splice site base pairing. In contrast, U5 snRNA interactions with the 5′ exon of the pre-mRNA progressively shift towards the 5′ end of U5 loop 1 as the crosslinking group is placed further from the 5′ splice site, with only interactions closest to the 5′ splice site persisting to the 5′ exon intermediate and the second step of splicing. A novel yeast U2 snRNA interaction with the 5′ exon was also identified, which is ATP dependent and requires U2-branchpoint interaction. This study provides insight into the nature and timing of snRNA interactions required for 5′ splice site recognition prior to the first step of pre-mRNA splicing. 相似文献
6.
The yeast EDC1 mRNA undergoes deadenylation-independent decapping stimulated by Not2p, Not4p, and Not5p 下载免费PDF全文
A major mechanism of eukaryotic mRNA degradation initiates with deadenylation followed by decapping and 5' to 3' degradation. We demonstrate that the yeast EDC1 mRNA, which encodes a protein that enhances decapping, has unique properties and is both protected from deadenylation and undergoes deadenylation-independent decapping. The 3' UTR of the EDC1 mRNA is sufficient for both protection from deadenylation and deadenylation-independent decapping and an extended poly(U) tract within the 3' UTR is required. These observations highlight the diverse forms of decapping regulation and identify a feedback loop that can compensate for decreases in activity of the decapping enzyme. Surprisingly, the decapping of the EDC1 mRNA is slowed by the loss of Not2p, Not4p, and Not5p, which interact with the Ccr4p/Pop2p deadenylase complex. This indicates that the Not proteins can affect decapping, which suggests a possible link between the mRNA deadenylation and decapping machinery. 相似文献
7.
In the yeast Saccharomyces cerevisiae, pre-mRNA 3'-end processing requires six factors: cleavage factor IA (CF IA), cleavage factor IB (CF IB), cleavage factor II (CF II), polyadenylation factor I (PF I), poly(A) polymerase (Pap1p) and poly(A)-binding protein I (Pab1p). We report the characterization of Pfs2p, a WD-repeat protein previously identified in a multiprotein complex carrying PF I-Pap1p activity. The 3'-end-processing defects of pfs2 mutant strains and the results of immunodepletion and immunoinactivation experiments indicate an essential function for Pfs2p in cleavage and polyadenylation. With a one-step affinity purification method that exploits protein A-tagged Pfs2p, we showed that this protein is part of a CF II-PF I complex. Pull-down experiments with GST fusion proteins revealed direct interactions of Pfs2p with subunits of CF II-PF I and CF IA. These results show that Pfs2p plays an essential role in 3'-end formation by bridging different processing factors and thereby promoting the assembly of the processing complex. 相似文献
8.
Multiple functional interactions between components of the Lsm2-Lsm8 complex, U6 snRNA, and the yeast La protein 总被引:2,自引:0,他引:2
The U6 small nuclear ribonucleoprotein is a critical component of the eukaryotic spliceosome. The first protein that binds the U6 snRNA is the La protein, an abundant phosphoprotein that binds the 3' end of many nascent small RNAs. A complex of seven Sm-like proteins, Lsm2-Lsm8, also binds the 3' end of U6 snRNA. A mutation within the Sm motif of Lsm8p causes Saccharomyces cerevisiae cells to require the La protein Lhp1p to stabilize nascent U6 snRNA. Here we describe functional interactions between Lhp1p, the Lsm proteins, and U6 snRNA. LSM2 and LSM4, but not other LSM genes, act as allele-specific, low-copy suppressors of mutations in Lsm8p. Overexpression of LSM2 in the lsm8 mutant strain increases the levels of both Lsm8p and U6 snRNPs. In the presence of extra U6 snRNA genes, LSM8 becomes dispensable for growth, suggesting that the only essential function of LSM8 is in U6 RNA biogenesis or function. Furthermore, deletions of LSM5, LSM6, or LSM7 cause LHP1 to become required for growth. Our experiments are consistent with a model in which Lsm2p and Lsm4p contact Lsm8p in the Lsm2-Lsm8 ring and suggest that Lhp1p acts redundantly with the entire Lsm2-Lsm8 complex to stabilize nascent U6 snRNA. 相似文献
9.
10.
11.
12.
Site-specific crosslinks of yeast U6 snRNA to the pre-mRNA near the 5' splice site. 总被引:3,自引:3,他引:0 下载免费PDF全文
We have introduced a single photochemical crosslinking reagent into specific sites in the central domain of U6 to identify the sites that are in close proximity to the pre-mRNA substrate. Four distinct U6 snRNAs were synthesized with a single 4-thiouridine (4-thioU) at positions 46, 51, 54, and 57, respectively. Synthetic U6 RNA containing the 4-thioU modifications can functionally reconstitute splicing activity in cell-free yeast splicing extracts depleted of endogenous U6 snRNA. Upon photoactivation with UV (>300 nm), 4-thioU at position 46 forms crosslinks to pre-mRNA near the 5' splice site at nt +4, +5, +6, and +7 in the intron, whereas 4-thioU at position 51 crosslinks to the pre-mRNA at positions -2, -1, +1, +2, +3, and at the invariant G in the lariat intermediate. All crosslinks are dependent on the presence of ATP and the splicing substrate. The two crosslinks to the pre-mRNA from position 46 and 51 of U6 can also occur in prp2 heat-inactivated yeast splicing extracts blocked immediately prior to the first chemical step. Significantly, the crosslink from position 51 can undergo subsequent splicing when the mutant extract is complemented with functional Prp2 protein in a chase experiment, indicating that the crosslink reflects a functional interaction that is maintained during the first step. The crosslink to lariat intermediate appears when the mutant spliceosomes are complemented with functional Prp2 protein added exogenously. This experiment is a paradigm for future studies in which different mutant extracts are used to establish the stage in assembly at which particular RNA-RNA interactions defined by unique crosslinks occur. 相似文献
13.
Cyclic 3',5'-adenosine monophosphate stimulates trehalose degradation in baker's yeast 总被引:21,自引:0,他引:21
J B van der Plaat 《Biochemical and biophysical research communications》1974,56(3):580-587
The levels of cyclic 3′,5′-AMP and trehalose, as well as the specific activity of the trehalase have been investigated in cells of baker's yeast () during the lag phase preceding growth. During the first few minutes a substantial increase in the intracellular concentration of cyclic 3′,5′-AMP was observed, followed by a 6–8 fold increase in trehalase activity concomitant with the rapid degradation of trehalose. Cell free extracts prepared from resting yeast were shown to contain a cryptic trehalase, which under physiological conditions could be activated by cyclic 3′,5′-AMP to the same degree as . These observations suggest that in the lag phase of growth, the level of trehalose in baker's yeast is under control of a system, regulated by the level of cyclic 3′,5′-AMP. 相似文献
14.
15.
16.
The 5' and 3' domains of yeast U6 snRNA: Lsm proteins facilitate binding of Prp24 protein to the U6 telestem region 下载免费PDF全文
The 5' and 3' domains of yeast U6 snRNA contain sequences that are thought to be important for binding to Prp24 and Lsm proteins. By extensive mutational analysis of yeast U6 snRNA, we confirmed that the 3' terminal uridine tract of U6 snRNA is important for U6 binding to Lsm proteins in yeast. Binding of Prp24 protein to U6 RNA is dependent on or is strongly enhanced by U6 binding of Lsm proteins. This supports a model for U6 snRNP assembly in which U6 RNA binds to the Lsm2-8 core prior to binding Prp24 protein. Using compensatory base-pairing analysis, we show that at least half of the recently identified U6 telestem as well as a nucleotide sequence in the other half of the telestem are important for binding of U6 RNA to Prp24 protein. Surprisingly, disruption of base pairing in the unconfirmed half of the telestem enhanced U6-Prp24 binding. Truncation of the entire 3' terminal domain or nearly the entire 5' terminal domain of yeast U6 allowed for detectable levels of splicing to proceed in vitro. In addition to gaining knowledge of the function of the 5' and 3' domains of yeast U6, our results help define the minimal set of requirements for yeast U6 RNA function in splicing. We present a revised secondary structural model of yeast U6 snRNA in free U6 snRNPs. 相似文献
17.
An Lsm2-Lsm7 complex in Saccharomyces cerevisiae associates with the small nucleolar RNA snR5 下载免费PDF全文
Sm-like (Lsm) proteins function in a variety of RNA-processing events. In yeast, the Lsm2-Lsm8 complex binds and stabilizes the spliceosomal U6 snRNA, whereas the Lsm1-Lsm7 complex functions in mRNA decay. Here we report that a third Lsm complex, consisting of Lsm2-Lsm7 proteins, associates with snR5, a box H/ACA snoRNA that functions to guide site-specific pseudouridylation of rRNA. Experiments in which the binding of Lsm proteins to snR5 was reconstituted in vitro reveal that the 3' end of snR5 is critical for Lsm protein recognition. Glycerol gradient sedimentation and sequential immunoprecipitation experiments suggest that the Lsm protein-snR5 complex is partly distinct from the complex formed by snR5 RNA with the box H/ACA proteins Gar1p and Nhp2p. Consistent with a separate complex, Lsm proteins are not required for the function of snR5 in pseudouridylation of rRNA. We demonstrate that in addition to their known nuclear and cytoplasmic locations, Lsm proteins are present in nucleoli. Taken together with previous findings that a small fraction of pre-RNase P RNA associates with Lsm2-Lsm7, our experiments suggest that an Lsm2-Lsm7 protein complex resides in nucleoli, contributing to the biogenesis or function of specific snoRNAs. 相似文献
18.
19.
Yeast Arc1p, human p43 and plant methionyl-tRNA synthetase (MetRS) possess an EMAPII-like domain capable of non-specific interactions with tRNA. Arc1p interacts with MetRS (MES1) and GluRS and operates as a tRNA-interacting factor (tIF) in trans of these two synthetases. In plant MetRS, the EMAPII-like domain is fused to the catalytic core of the synthetase and acts as a cis-acting tIF for aminoacylation. We observed that the catalytic core of plant MetRS expressed from a centromeric plasmid cannot complement a yeast arc1(-) mes1(-) strain. Overexpression of the mutant enzyme from a high-copy number plasmid restored cell growth, suggesting that deletion of its C-terminal tIF domain was responsible for the poor aminoacylation efficiency of that enzyme in vivo. Accordingly, expression of full-size plant MetRS from a centromeric plasmid, but also of fusion proteins between its catalytic core and the EMAPII-like domains of yeast Arc1p or of human p43 restored cell viability. These data showed that homologous tIF domains from different origins are interchangeable and may act indifferently in trans or in cis of the catalytic domain of a synthetase. Unexpectedly, co-expression of Arc1p with the catalytic core of plant MetRS restored cell viability as well, even though Arc1p did not associate with plant MetRS. Because Arc1p also interacts with yeast GluRS, restoration of cell growth could be due at least in part to its role of cofactor for that enzyme. However, co-expression of human p43, a tIF that did not associate with plant MetRS or with yeast GluRS and MetRS, also restored cell viability of a yeast strain that expressed the catalytic core of plant MetRS. These results show that p43 and Arc1p are able to facilitate tRNA aminoacylation in vivo even if they do not interact physically with the synthetases. We propose that p43/Arc1p may be involved in sequestering tRNAs in the cytoplasm of eukaryotic cells, thereby increasing their availability for protein synthesis. 相似文献
20.
The yeast superkiller (SKI) genes were originally identified from mutations allowing increased production of killer toxin encoded by M "killer" virus, a satellite of the dsRNA virus L-A. XRN1 (SKI1) encodes a cytoplasmic 5'-exoribonuclease responsible for the majority of cytoplasmic RNA turnover, whereas SKI2, SKI3, and SKI8 are required for normal 3'-degradation of mRNA and for repression of translation of poly(A) minus RNA. Ski2p is a putative RNA helicase, Ski3p is a tetratricopeptide repeat (TPR) protein, and Ski8p contains five WD-40 (beta-transducin) repeats. An xrn1 mutation in combination with a ski2, ski3, or ski8 mutation is lethal, suggesting redundancy of function. Using functional epitope-tagged Ski2, Ski3, and Ski8 proteins, we show that Ski2p, Ski3p, and Ski8p can be coimmunoprecipitated as an apparent heterotrimeric complex. With epitope-tagged Ski2p, there was a 1:1:1 stoichiometry of the proteins in the complex. Ski2p did not associate with Ski3p in the absence of Ski8p, nor did Ski2p associate with Ski8p in the absence of Ski3p. However, the Ski3p/Ski8p interaction did not require Ski2p. In addition, ski6-2 or ski4-1 mutations or deletion of SKI7 did not affect complex formation. The identification of a complex composed of Ski2p, Ski3p, and Ski8p explains previous results showing phenotypic similarity between mutations in SKI2, SKI3, and SKI8. Indirect immunofluorescence of Ski3p and subcellular fractionation of Ski2p and Ski3p suggest that Ski2p and Ski3p are cytoplasmic. These data support the idea that Ski2p, Ski3p, and Ski8p function in the cytoplasm in a 3'-mRNA degradation pathway. 相似文献