首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The resting oxygen consumption and breathing pattern of nine newborn and adult species (ranging in body size from mouse to human) have been compared on the basis of data collected from the literature. Minute ventilation is similarly linked to at both ages, the percent of extracted as O2 about 2.2. Tidal volume/kg is an interspecies constant in newborns and adults, approximately 8 ml/kg. Breathing frequency decreases with the increase in size in a different way at the two ages: large species have newborns breathing at rates 2–3 times above the corresponding adults' values, while in the small species newborns and adults breathe at almost the same rate. Therefore the newborns of the smallest species have both and below the expected values, implying a greater inability to cope with the external demands than newborns of larger species. Several considerations indicate that in the smallest newborns the mechanical properties of the respiratory system could be a constraint to resting ventilations larger than observed. It is therefore possible that their low is the cause, and not the effect, of the relatively small .  相似文献   

2.
Summary Resting rates of O2 consumption against , exercise endurance times and during recovery from vigorous exercise were measured inSceloporus occidentalis captured near sea level and inS. graciosus captured above 2850 m. Oxygen consumption against was also measured inS. occidentalis captured above 2850 m. When was recorded continuously, as ambient was slowly reduced from 155 Torr, it became directly dependent upon ambient between 110 and 120 Torr. The critical for the high altitude lizards was lower than that for the lowland lizards, which enabled the former to maintain relatively higher 's when ambient was reduced below 120 Torr. The high altitude lizards also had significantly greater endurance when stimulated to exercise at 1600 m ( 130 Torr). Both the higher under hypoxia and the greater endurance roughly parallel a significantly greater maximum in the high altitude lizards. At a simulated altitude of 3600 m ( 100 Torr), maximum and rate of recovery of the O2 debt calculated from post active were significantly reduced in the lowland but not the high altitude lizards. The effects of simulated altitude conditions on the lowland but not the mountaine animals indicate adaptations to altitude in these sceloporine lizards. We did not find any consistent relationship between organ/body weight ratios or hematocrit and our measures of endurance or the altitude at which the lizards were captured.  相似文献   

3.
Summary The rate of oxygen consumption ( ) by skeletal muscle was investigated in isolated perfused hindlimbs of laboratory rats and lemmings (Lemmus). In both species, increased in proportion to blood flow rate, even at flow rates 4–5 times above resting level. The slope of the line relating to skeletal muscle blood flow was significantly greater in the lemming than in the rat. This may be related to the inverse relationship between body weight and metabolic rate. These data support the hypothesis that in small animals a dependent relationship exists between blood flow and skeletal muscle .  相似文献   

4.
Summary Rates of protein synthesis and oxygen consumption ( O2) in cod were compared in both fasted and refed animals. During a 14-day fast both protein synthesis and respiration rates fell to stable values after 6 days. When a meal of whole sandeel at 6% body weight was fed to fish fasted for 6 days, protein synthesis and ( O2) increased to a maximum at between 12 and 18 h after feeding. Peak ( O2) was about twice the pre-feeding values, while whole animal protein synthesis increased four-fold. There were differences between tissues in the timing of maximum protein synthesis; the liver and stomach responded faster than the remainder of the body. Maximum protein synthesis rates in the liver and stomach occurred at 6 h after feeding, at which time their calculated contribution to total ( O2) was 11%. Similar calculations suggested that the integrated increment in whole animal protein synthesis contributed between 23% and 44% of the post-prandial increase in ( O2). It was concluded that protein synthesis is an important contributor to increased ( O2) after feeding in cod.Abbreviations A s absolute rate of protein synthesis - ASDA apparent specific dynamic action - ATP adenosine triphosphate - k s fractional rate of protein synthesis - k s/RNA amount of protein synthesized per unit RNA - ( O2) oxygen consumption - PCA perchloric acid - RNA ribonucleic acid  相似文献   

5.
Summary The effects of different ambient temperatures (T a) on gas exchange and ventilation in deer mice (Peromyscus maniculatus) were determined after acclimation to low and high altitude (340 and 3,800 m).At both low and high altitude, oxygen consumption ( ) decreased with increasingT a atT a from –10 to 30 °C. The was 15–20% smaller at high altitude than at low altitude atT a below 30 °C.Increased atT a below thermoneutrality was supported by increased minute volume ( ) at both low and high altitude. At mostT a, the change in was primarily a function of changing respiration frequency (f); relatively little change occurred in tidal volume (V T) or oxygen extraction efficiency (O2EE). AtT a=0 °C and below at high altitude, was constant due to decliningV T and O2EE increased in order to maintain high .At high altitude, (BTP) was 30–40% higher at a givenT a than at low altitude, except atT a below 10 °C. The increased at high altitude was due primarily to a proportional increase inf, which attained mean values of 450–500 breaths/min atT a below 0 °C. The (STP) was equivalent at high and low altitude atT a of 10 °C and above. At lowerT a, (STPD) was larger at low altitude.At both altitudes, respiratory heat loss was a small fraction (<10%) of metabolic heat production, except at highT a (20–30 °C).Abbreviations EHL evaporative heat loss - f respiration frequency - HL a heat loss from warming tidal air - HL e evaporative heat loss in tidal air - HL total respiratory heat loss - MHP metabolic heat production - O 2 EE oxygen extraction efficiency - RQ respiratory quotient - T a ambient temperature - T b body temperatureT lc lower critical temperature - carbon dioxide production - evaporative water loss - oxygen consumption - minute volume - V T tidal volume  相似文献   

6.
Summary Six Standardbred horses were used to evaluate the time course of pulmonary gas exchange, ventilation, heart rate (HR) and acid base balance during different intensities of constant-load treadmill exercise. Horses were exercised at approximately 50%, 75% and 100% maximum oxygen uptake ( max) for 5 min and measurements taken every 30 s throughout exercise. At all work rates, the minute ventilation, respiratory frequency and tidal volume reached steady state values by 60 s of exercise. At 100% max, the oxygen consumption ( ) increased to mean values of approximately 130 ml/kg·min, which represents a 40-fold increase above resting . At the low and moderate work rates, showed no significant change from 30 s to 300 s of exercise. At the high work rate, the mean at 30 s was 80% of the value at 300 s. The HR showed no significant change over time at the moderate work rate but differing responses at the low and high work rates. At the low work rate, the mean HR decreased from 188 beats/min at 30 s to 172 beats/min at 300 s exercise, whereas at the high work rate the mean HR increased from 204 beats/min at 30 s to 221 beats/min at 300 s exercise. No changes in acid base status occurred during exercise at the low work rate. At the moderate work rate, a mild metabolic acidosis occurred which was nonprogressive with time, whereas the high work rate resulted in a progressive metabolic acidosis with a base deficit of 16 mmol/l by 300 s exercise. It is concluded that the kinetics of gas exchange during exercise are more rapid in the horse than in man, despite the relatively greater change in in the horse when going from rest to high intensity exercise.Symbols and abbreviations E minute ventilation - V T tidal volume - oxygen uptake - carbon dioxide output - oxygen pulse - ventilatory equivalent for oxygen - ventilatory equivalent for carbon dioxide - R respiratory exchange ratio - HR heart rate - SBC standard bicarbonate - STPD standard temperature and pressure dry - BTPS body temperature and pressure saturated - arterial oxygen content - arteriovenous oxygen content difference - Rf respiratory frequency  相似文献   

7.
We investigated the aerobic and anaerobic contributions to performance during the Wingate test in sprint and middle-distance runners and whether they were related to the peak aerobic and anaerobic performances determined by two commonly used tests: the force-velocity test and an incremental aerobic exercise test. A group of 14 male competitive runners participated: 7 sprinters, aged 20.7 (SEM 1.3) years, competing in 50, 100 and 200-m events and 7 middle-distance runners, aged 20.0 (SEM 1.0) years, competing in 800, 1,000 and 1,500 m-events. The oxygen uptake ( ) was recorded breath-by-breath during the test (30 s) and during the first 20 s of recovery. Blood samples for venous plasma lactate concentrations were drawn at rest before the start of the test and during the 20-min recovery period. During the Wingate test mean power ( ) was determined and three values of mechanical efficiency, one individual and two arbitrary, 16% and 25%, were used to calculate the contributions of work by aerobic ( aer,ind,16%,25%) and anaerobic ( an,ind,16%,25%) processes. Peak anaerobic power ( an,peak) was estimated by the force-velocity test and maximal aerobic energy expenditure ( aer,peak) was determined during an incremental aerobic exercise test. During the Wingate test, the middle-distance runners had a significantly greater than the sprinters (P < 0.001), who had significantly greater venous plasma lactate concentrations (P < 0.001). Moreover, aer,ind,16%,25% were also significantly higher (P < 0.05) in the middle-distance runners [ aer,ind 45 (SEM 4) % vs 28 (SEM 2) %; aer,16% 30 (SEM 3) % vs 19 (SEM 2) %; aer,25% 46 (SEM 3) % vs 29 (SEM 2)%]; an,ind,16%,25% in the sprint runners (P < 0.05) [ an,ind 72 (SEM 3) % vs 55 (SEM 4) %; an,16% 81 (SEM 2) % vs 70 (SEM 3) %; an,25% 71 (SEM 2) % vs 54 (SEM 3) %]. The aer,ind/ aer,peak and × an,ind/ an,peak ratios, however, were not significantly different between the two groups of athletes. These results would indicate that the sprinters and middle-distance runners used preferentially a metabolic system according to their speciality. Nevertheless, under the conditions of its experiment, they seemed to rely on the same percentage of both peak anaerobic and peak aerobic performance for a given exercise task.  相似文献   

8.
Summary Oxygen consumption was measured at rest and during spontaneous activity at body temperatures of 25 and 35°C in 14 fasting Savanna monitor lizards,Varanus exanthematicus ranging in weight from 172 to 7500 g. The allometric relationship between metabolic rate at 25°C and body weight (W) is given by: (ml O2 STPD·g–1·hr–1)=0.88W –0.43 (Fig. 2). Although statistical comparisons are equivocal, this intraspecific size dependence exceeds that reported for interspecific comparisons among reptiles and other vertebrate groups (Fig 3). A reproducible diurnal pattern of activity was observed in undisturbed animals with minimum values of between 2400 and 0800 h (Fig. 1). Spontaneous activity and generally reached peak values between 1200 and 2000 hrs. The average ratio of active aerobic metabolic rate (AMR) to minimum (standard) aerobic metabolic rate (SMR) was 8.2. This voluntary AMR/SMR inVaranus exceeds the AMR/SMR for most reptiles stimulated to exhaustion. The high aerobic capacity is consistent with other evidence for efficient exchange and transport of respiratory gases inV. exanthematicus; e.g., low or absent intracardiac shunt flow resulting in high arterial saturation and low ventilation and perfusion requirements.  相似文献   

9.
Energetics of vocalization by an anuran amphibian (Hyla versicolor)   总被引:4,自引:0,他引:4  
Summary The metabolic demands of vocalization byHyla versicolor were determined by measuring oxygen consumption and whole body lactate content of calling animals. A stepwise multiple regression analysis identified both calling rate (calls/h) and call duration (s/call) as significant determinants of oxygen consumption during calling. These two variables accounted for 84% of the total variation in oxygen consumption observed in calling frogs. Aerobic metabolism increased linearly with calling rate and call duration, reaching a peak value of 1.7 ml O2/(g·h) at the highest vocalization effort. For comparison, metabolic rates of the same individuals were also measured during short bouts of vigorous locomotor exercise induced by mechanical stimulation. The mean value of was only 62% of the peak , and 5 of 13 frogs had rates of oxygen consumption during calling that exceeded their . Whole body lactate levels were measured in two samples of calling frogs, one collected early in the evening (2100–2115 h) and the other 1.5 h later (2230–2245 h). The frogs in the second sample had significantly lower lactate levels (0.10 mg/g) than the frogs collected early in the evening (0.22 mg/g). Hence, vocalization does not entail the use of anaerobic metabolism, although lactate levels may be slightly elevated at the onset of an evening of calling. Calling rates of unrestrained frogs in a large chorus were measured at regular intervals during an evening. During the first half hour of calling, rates increased gradually from an initial mean value of 600 calls/h at 2030 h to nearly 1400 calls/h at 2100 h. These data indicate that acoustic advertisement byHyla versicolor is among the most energetically expensive activities regularly undertaken by any anuran, and indeed, is the most demanding yet measured in an ectothermic vertebrate.Abbreviations resting rate of oxygen consumption - maximum rate of oxygen consumption - rate of oxygen consumption during forced exercise - rate of oxygen consumption during calling  相似文献   

10.
Summary The structure, dimensions and gas exchanging properties of the lungs of the Australian Carpet PythonMorelia spilotes variegata have been studied by dissection, by sampling lung gas and pulmonary venous blood and by using radioactive techniques to monitor distribution of ventilation ( ) and blood flow ( ). The lungs have alveolar and saccular parts (mean capacities 10.2 and 129.3 ml/kg body weight, respectively). The sacs store inspired air creating a flow through situation which abolishes the dead space effect, prevents large expansions of the alveolar lung and allows gas exchange during both inspiration and expiration. Gas exchange was measured in intubated snakes in the resting and active states at 20–26 °C. In the resting state, respiratory frequency, tidal volume and ventilation were 1.72±0.56/min, 14.8±10.8 ml/kg, 22.04±7.75 ml/kg · min and pulmonary venousP O 2,P CO 2 and pH were 58.9±14.5 Torr, 21.5±4.2 Torr, and 7.55±0.07 Torr, respectively. R. Q. was low, 0.65±0.11. In the active state both ventilation ( ) and cardiac output increase and blood flow is redistributed more evenly along the alveolar lung, enabling increased O2 uptake. Since blood flow ( ) in the alveolar lung is stratified (Read and Donnelly, 1972) redistribution of during activity is proposed as a possible reserve capacity for O2 extraction by reptilian lungs.  相似文献   

11.
Altitudinal and seasonal effects on aerobic metabolism of deer mice   总被引:9,自引:0,他引:9  
Summary I compared the maximal aerobic metabolic rates ( ), field metabolic rates (FMR), aerobic reserves ( -FMR), and basal metabolic rates (BMR) of wild and recently captured deer mice from low (440 m) and high (3800 m) altitudes. To separate the effects of the thermal environment from other altitudinal effects, I examined mice from different altitudes, but similar thermal environments (i.e., summer mice from high altitude and winter mice from low altitude). When the thermal environment was similar, , FMR, and aerobic reserve of low and high altitude mice did not differ, but BMR was significantly higher at high altitude. Thus, in the absence of thermal differences, altitude had only minor effects on the aerobic metabolism of wild or recently captured deer mice.At low altitude, there was significant seasonal variation in , FMR, and aerobic reserve, but not BMR. BMR was correlated with , but not with FMR. The significant positive correlation of BMR with indicates a cost of high , because higher BMR increases food requirements and energy use during periods of thermoneutral conditions.Abbreviations BMR basal metabolic rate - FMR field metabolic rate - partial pressure of oxygen - T a ambient temperature - T b body temperature - T e operative temperature - maximal aerobic metabolic rate  相似文献   

12.
Oxygen consumption ( O2), heart rate, ventilation and central rating of perceived exertion (RPE) in repetitive lifting while executing squat and stoop techniques were investigated in ten male forestry workers. In all five mass/frequency combinations studied, O2 was significantly higher for the squat than for the stoop technique. No differences were found in RPE between the techniques. The O2 and RPE recordings were also related to those obtained during maximal repetitive lifting (same lifting technique) and maximal treadmill running. The O2 expressed as a percentage of that obtained during maximal repetitive lifting with the same lifting technique was defined as relative aerobic intensity (% O2max, lifting). The % O2max, lifting was not significantly different between the techniques except for the lowest mass lifted (1 kg). This study therefore would support the hypothesis that RPE is more closely related to % O2max, lifting than to absolute aerobic intensity. Related to maximal treadmill running, it was demonstrated for both lifting techniques that relative RPE (percentage of the RPE during maximal running) was more accurate than relative O2 (percentage of maximal O2 during maximal running) for determining the % O2max, lifting in repetitive lifting. The study showed that the higher O2 during squat. lifting compared to stoop lifting was caused by the O2 expended in lifting and lowering the body rather than the O2 expended lifting and lowering the external mass. It was concluded that the stoop technique was not superior to the squat technique in terms of central RPE. Based on % O2max, lifting, there may be a rationale for choosing the stoop technique during repetitive lifting with light masses, but not with heavy masses.  相似文献   

13.
Hyperbaric oxygen at pressures of 300 to 500 kPa has been shown to induce changed distribution of cerebral blood flow ( CBF) in rats, in places reducing the supply of the supplementary O2. Thus, in the present study, the effect of hyperoxia at 101 (group 1, n = 9) and 150 (group 2, n = 9) kPa OZ on cerebral blood flow distribution and central haemodynamics was tested in conscious, habituated rats. During the control period the systolic arterial pressure (BPs), heart rate (f c), breathing frequency (f b), cardiac output ( c), arterial acid-base chemistry and glucose, as well as CBF distribution (r CBF) were similar in the two groups of animals. During O2 exposure, the acid-base chemistry remained unchanged. The haemoglobin decreased in group 2, but remained unchanged in group 1. The f c decreased rapidly in both groups during the change in gas composition, after which f c remained constant both in group 1 and in group 2, for whom pressure was increased. The c and f b decreased and BPs increased similarly in the two groups. Total CBF and r CBF decreased to the same extent in both groups, and the r CBF changes were equally scattered. In group 1, breathing of pure O2 did not increase the O2 supply to any cerebral region except to the thalamus and colliculi after 60 min, whereas the O2 supply to the hypothalamus decreased and remained low. In group 2, the O2 supply was unchanged compared to the control period in all regions. These findings agree with previous observations during exposures to higher O2 pressures. In air after O2 exposure the acid-base chemistry remained normal. The f c and f b increased to higher levels than during the control period. The BPs remained high. The brain blood flows were increased, inducing elevated O2 supply to several brain regions compared to the control period. In conclusion, O2 supply to the central nervous system was found to be in the main unchanged during breathing of O2 at 101 kPa and 150 kPa.  相似文献   

14.
Summary Adelie penguins (Pygoscelis adeliae) experience a wide range of ambient temperatures (T a) in their natural habitat. We examined body temperature (T b), oxygen consumption ( ), carbon dioxide production ( ), evaporative water loss ( ), and ventilation atT a from –20 to 30 °C. Body temperature did not change significantly between –20 and 20°C (meanT b=39.3°C).T b increased slightly to 40.1 °C atT a=30°C. Both and were constant and minimal atT a between –10 and 20°C, with only minor increases at –20 and 30°C. The minimal of adult penguins (mean mass 4.007 kg) was 0.0112 ml/[g·min], equivalent to a metabolic heat production (MHP) of 14.9 Watt. The respiratory exchange ratio was approximately 0.7 at allT a. Values of were low at lowT a, but increased to 0.21 g/min at 30°C, equivalent to 0.3% of body mass/h. Dry conductance increased 3.5-fold between –20 and 30°C. Evaporative heat loss (EHL) comprised about 5% of MHP at lowT a, rising to 47% of MHP atT a=30°C. The means of ventilation parameters (tidal volume [VT], respiration frequency [f], minute volume [I], and oxygen extraction [ ]) were fairly stable between –20 and 10°C (VT did not change significantly over the entireT a range). However, there was considerable inter- and intra-individual variation in ventilation patterns. AtT a=20–30°C,f increased 7-fold over the minimal value of 7.6 breaths/min, and I showed a similar change. fell from 28–35% at lowT a to 6% atT a=30°C.Abbreviations C thermal conductance - EHL evaporative heat loss - oxygen extraction - f respiratory frequency - MHP metabolic heat production - evaporative water loss - LCT lower critical temperature - RE respiratory exchange ratio - T a ambient temperature - T b body temperature - rate of oxygen consumption - rate of carbon dioxide production - I inspiratory minute volume - VT tidal volume  相似文献   

15.
The non-uniqueness of distributions satisfying inert gas retention data without error is studied. The ability of such data to resolve blood flows at particular values is discussed through the application of linear programming and Backus-Gilbert theory. It is shown that the resolution deteriorates away from the extremes of low and high .  相似文献   

16.
Summary The influence of local temperature changes within the posterior portion of the body on dorsal aorta blood flow ( ), femoral arterial pressure (P a ), peripheral resistance (R), skin blood flow ( ) and skeletal muscle blood flow ( ) was examined in unanesthetized lizards (Iguana iguana andTubinambis nigropunctatus). In response to local heating of the hind legs and tail and increased,P a was generally unchanged,R decreased and decreased or was unchanged (Fig. 2). It is suggested that the acquisition of heat may be favored by diverting the increase in away from the muscle to the warmer skin. In response to cooling and decreased,P a was generally unchanged, R increased and increased or was unchanged. Hence, during cooling the retention of heat may be favored by diverting blood away from the skin to the deeper muscle. The muscle-skin shunt is under sympathetic control since following blockade with phenoxybenzamine HCL (Dibenzyline) muscle blood flow changes in response to temperature were qualitatively similar to those of skin (Fig. 4). These changes in peripheral circulatory patterns are independent of changes in heart rate or deep body temperature.Baker and Weathers were predoctoral and postdoctoral trainees, respectively, under USPHS Grant HE-05696. This study was also supported by NSF Grant GB-8523 and Los Angeles County Heart Association Grant 437IG.  相似文献   

17.
Summary Rosy finches (Leucosticte arctoa) breed at altitudes above 3500 m in eastern California. House finches (Carpodacus mexicanus) belong to the same subfamily (Carduelinae), but breed at much lower elevations. Oxygen consumption ( ) and ventilatory parameters of these two species were measured over a wide range of ambient temperatures (T a) at low altitude (LA; 150 m) and at high altitude (HA; 3800 m).Minimal nighttime 's of rosy finches and house finches at LA (T a=30°C) were close to allometrically predicted values for passerine birds. At both altitudes, increased linearly with decreasingT a betweenT a=20 and –10°C. Resting 's were slightly higher at HA than at LA on average.In both species, minute volume ( ) was inversely related toT a.T a-correlated increases in resulted from significant increases in both ventilatory frequency (f) and tidal volume (V T) at both altitudes. Oxygen extraction efficiency ( ) was independent ofT a in rosy finches at LA, but declined significantly with decreasingT a in rosy finches at HA and in house finches at both altitudes.At a givenT a, both species had significantly greater (BTPS) at HA than at LA. Altitude-correlated increases in resulted primarly from increases inf with little change inV T. was significantly greater at HA than at LA in both species.In spite of the difference in altitudinal distributions of rosy finches and house finches, there were few conspicuous interspecific differences in metabolic or ventilatory adaptation to altitude or lowT a over the range of conditions examined.Symbols and abbreviations BMR basal metabolic rate - BTPS at body temperature and pressure, saturated - oxygen extraction efficiency - f ventilation frequency - h mean coefficient of heat transfer - HA high altitude - instantaneous oxygen consumption - LA low altitude - RH relative humidity - SMR standard metabolic rate - STPD standard temperature and pressure, dry - T temperature - a ambient - b body - lc lower critical of thermoneutral zone - minute volume - V T tidal volume  相似文献   

18.
The aim of this study was to estimate the characteristic exercise intensity CL which produces the maximal steady state of blood lactate concentration (MLSS) from submaximal intensities of 20 min carried out on the same day and separated by 40 min. Ten fit male adults [maximal oxygen uptake max 62 (SD 7) ml · min–1 · kg–1] exercisOed for two 30-min periods on a cycle ergometer at 67% (test 1.1) and 82% of max (test 1.2) separated by 40 min. They exercised 4 days later for 30 min at 82% of max without prior exercise (test 2). Blood lactate was collected for determination of lactic acid concentration every 5 min and heart rate and O2 uptake were measured every 30 s. There were no significant differences at the 5th, 10th, 15th, 20th, 25th, or 30th min between , lactacidaemia, and heart rate during tests 1.2 and 2. Moreover, we compared the exercise intensities CL which produced the MLSS obtained during tests 1.1 and 1.2 or during tests 1.1 and 2 calculated from differential values of lactic acid blood concentration ([1a]b) between the 30th and the 5th min or between the 20th and the 5th min. There was no significant difference between the different values of CL [68 (SD 9), 71 (SD 7), 73 (SD 6),71 (SD 11) % of max (ANOVA test,P<0.05). Four subjects ran for 60 min at their CL determined from periods performed on the same day (test 1.1 and 1.2) and the difference between the [la]b at 5 min and at 20 min ( ([la]b)) was computed. The [la]b remained constant during exercise and ranged from 2.2 to 6.7 mmol · l–1 [mean value equal to 3.9 (SD 1) mmol · l–1]. These data suggest that the CL protocol did not overestimate the exercise intensity corresponding to the maximal fractional utilization of max at MLSS. For half of the subjects the CL was very close to the higher stage (82% of max where an accumulation of lactate in the blood with time was observed. It can be hypothesized that CL was very close to the real MLSS considering the level of accuracy of [la]b measurement. This study showed that exercise at only two intensities, performed at 65% and 80% of max and separated by 40 min of complete rest, can be used to determine the intensity yielding a steady state of [la–1]b near the real MLSS workload value.  相似文献   

19.
Summary Heat production of two diurnal rodents,Rhabdomys pumilio andLemniscomys griselda was measured in long scotophase-LS (8L: 16D; 25°C) acclimated and long scotophase and cold — LSAC (8L: 16D; 6°C) acclimated animals and compared to a control group (12L: 12D; 25°C).LS increased in both species. Further acclimation of LSAC increased inR. pumilio and decreased inL. griselda. LS increased body temperature (T b) inL. griselda only. LS increased overall thermal conductance in both species. LSAC caused a further increase in this parameter inR. pumilio.A singificant (P<0.001) increase in the magnitude of maximal nonshivering thermogenesis (NST) was observed in both species due to LS acclimation. LSAC did not change this maximal NST but increased its obligatory part (minimal , P<0.05, inL. griselda, andP<0.001, inR. pumilio).The results of this study show that winter acclimatization of heat production mechanisms, in both species, may be due to extension of scotophase.Abbreviations LS long scotophase - LSAC long scotophase and cold - NA noradrenaline - NST nonshivering thermogenesis - RMR resting metabolic rate  相似文献   

20.
Summary Ventilation and metabolic rate were measured during exercise in adult female green turtles at Tortuguero, Costa Rica. Six turtles were studied at night on the beach while actively covering their nests. Five turtles, captured after nesting, were studied at rest, during 20 min of spontaneous activity, and during recovery from the activity. Arterial blood samples were obtained from the latter animals and analyzed for pH, , O2 concentration and lactate concentration. Blood was obtained by heart puncture from 8 turtles immediately after nesting and analyzed for blood lactate. Active metabolism ( ) in both groups was almost 10 times the standard resting value (0.024 l/kg·h). The increase in ventilation during exercise, due exclusively to higher breathing frequency, exceeded the increase in , so that the ratio (the air convection requirement), more than doubled. The respiratory exchange ratio, , that averaged 0.56 in the resting turtles, increased to 1.08 during exercise in the captured turtles and was 0.90 in the nesting animals. Arterial and O2 saturation remained unchanged during exercise, indicating efficient gas exchange in the lungs. Pre-exercise values of all variables were restored 1 h after the end of exercise. Blood acid-base changes associated with activity in the captive turtles were variable and not statistically significant, but suggested partially compensated metabolic acidosis. Lactate concentrations were significantly elevated in the nesting turtles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号