首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Cyanidium caldarium (Tilden) Geitler, a non-vacuolate unicellular alga, resuspended in medium flushed with air enriched with 5% CO2, assimilated NH4+ at high rates both in the light and in the dark. The assimilation of NO3, by contrast, was inhibited by 63% in the dark. In cell suspensions flushed with CO2-free air, NH4+ assimilation decreased with time both in the light and in the dark and ceased almost completely after 90 min. The addition of CO2 completely restored the capacity of the alga to assimilate NH4+. NO3 assimilation, by contrast, was 33% higher in the absence of CO2 and was linear with time. It is suggested that NO3 and NH4+ metabolism in C. caldarium are differently controlled in response to the light and carbon conditions of the cell.  相似文献   

2.
In N-sufficient cells of Chlorella sorokiniana Shihira and Krauss strain 211/8K (CCAP of Cambridge University), assimilation of ammonium was strictly dependent on light and CO2, and was severely inhibited by 100 μ M atrazine or 10 μ M 3-(3,4-dichlorophenyl)-1, l-dimethylurea (DCMU). In N-limited cells, assimilation of NH4+ took place at similar rates in both light and darkness, which were 1.6-fold higher than the rate of light-dependent assimilation by N-sufficient cells. Assimilation by N-limited cells was inhibited by l -methionine- dl -sulfoximine (MSX), but not by atrazine or DCMU.
The rate of photosynthetic O2 evolution was 2.9±0.9 mmol ml−1 packed cell volume (PCV) h−1 in N-sufficient cells, and 0.64±0.12 mmol ml−1 PCV h−1 in N-limited cells. In the latter resupply of ammonium resulted in a rapid activation by 22%;, followed by a time-dependent increase of the photosynthetic O2 evolution, which after 12 h reached the same rate as in N-sufficient cells.
Respiratory consumption of oxygen in darkness in N-sufficient and N-limited cells was 0.10±0.03 and 0.11±0.02 mmol ml−1 PCV h−1, respectively. Addition of ammonium was without effect on respiration of N-sufficient cells, but resulted in a 4-fold stimulation of respiration of N-limited cells. Such stimulation took place also in cells treated with DCMU, atrazine, or MSX, and it was also promoted by methylammonium. The stimulation of respiration lasted for several hours.  相似文献   

3.
Translocation of NH4+ was studied in relation to the expression of three glutamine synthetase (GS, EC 6.3.1.2) isogenes and total GS activity in roots and leaves of hydroponically grown oilseed rape ( Brassica napus ). The concentration of NH4+ in the stem xylem sap of NO3-fed plants was 0.55–0.70 m M , which was ≈60% higher than that in plants deprived of external nitrogen for 2 days. In NH4+-fed plants, xylem NH4+ concentrations increased linearly both with time of exposure to NH4+ and with increasing external NH4+ concentration. The maximum xylem NH4+ concentration was 8 m M , corresponding to 11% of the nitrogen translocated in the xylem. In the leaf apoplastic solution, the NH4+ concentration increased from 0.03 m M in N-deprived plants to 0.20 m M in N-replete plants. The corresponding values for leaf tissue water were 0.33 and 1.24 m M , respectively. The addition of either NO3 or NH4+ to N-starved plants induced both cytosolic gs isogene expression and GS activity in the roots. In N-replete plants, gs isogene expression and GS activity were repressed, probably due to carbon limitations, thereby protecting the roots against the excessive drainage of photosynthates. Repressed gs isogene expression and GS activity under N-replete conditions caused enhanced NH4+ translocation to the shoots.  相似文献   

4.
Acetylene reduction (nitrogenase activity) by excised cephalodia of Peltigera aphthosa Willd. slowly declined on transfer of the cephalodia from light to darkness. The decline was more rapid in the absence of CO2 or when phosphoenolpyruvate carboxylase activity was inhibited by adding maleic acid or malonic acid. When glutamine synthetase (GS) activity was totally inhibited by adding l -methionine- dl -sulphoximine (MSX) the decline in nitrogenase activity in the absence of CO2 still occurred. However, this loss of activity did not occur when the mycobiont was disrupted using digitonin (0.01 % w/v) and the fixed NH4+ was released into the medium. The data suggest that dark CO2 fixation by the fungus supplies carbon skeletons which remove newly fixed NH4+ produced by the cyanobacterium. When such carbon skeletons are not available MH4+ accumulates and inhibits nitrogenase activity even in the absence of GS activity. It is probable that NH4+ and a product of GS exert independent inhibitory effects on nitrogenase activity.  相似文献   

5.
Net fluxes of NH4+ and NO3 along adventitious roots of rice ( Oryza sativa L.) and the primary seminal root of maize ( Zea mays L.) were investigated under nonperturbing conditions using ion-selective microelectrodes. The roots of rice contained a layer of sclerenchymatous fibres on the external side of the cortex, whereas this structure was absent in maize. Net uptake of NH4+ was faster than that of NO3 at 1 mm behind the apex of both rice and maize roots when these ions were supplied together, each at 0·1 mol m–3. In rice, NH4+ net uptake declined in the more basal regions, whereas NO3 net uptake increased to a maximum at 21 mm behind the apex and then it also declined. Similar patterns of net uptake were observed when NH4+ or NO3 was the sole nitrogen source, although the rates of NO3 net uptake were faster in the absence of NH4+. In contrast to rice, rates of NH4+ and NO3 net uptake in the more basal regions of maize roots were similar to those near the root apex. Hence, the layer of sclerenchymatous fibres may have limited ion absorption in the older regions of rice roots.  相似文献   

6.
The appearance of soil NO3 after forest disturbance is commonly ascribed to a higher availability of NH4+ to autotrophic nitrifiers, or to a reduction in available-C resulting in lower microbial assimilation of NO3. Alternatively, it has been proposed that increasing NH4+ pools following disturbance could increase net nitrification by reducing microbial assimilation of NO3. Forest floor material was collected from shelterwood harvest plots which displayed both low available-C and low NH4+ pools, and where previous experiments had suggested the prevalence of heterotrophic nitrification. Subsamples were amended with incremental rates of glucose-C or NH4+, and gross NO3 transformation rates were measured by isotope dilution. Glucose-C additions had little effect on the net difference between gross NO3 production and consumption rates. On the other hand, NH4+ additions caused gross NO3 consumption processes to decrease sharply, while gross NO3 production processes remained constant. The results suggest that NH4+ can have an immediate positive effect on net nitrification rates by suppressing NO3 assimilation and uptake systems.  相似文献   

7.
Abstract. Poplar shoots ( Populus euramericana L.) obtained from cuttings were exposed for 6 or 8 weeks to NH3 concentrations of 50 and 100 μgm−3 or filtered air in fumigation chambers. After this exposure the rates of NH3 uptake, transpiration, CO2 assimilation and respiration of leaves were measured using a leaf chamber. During the long-term exposure also modulated chlorophyll fluorescence measurements were carried out to obtain information about the photosynthetic performance of individual leaves. Both fluorescence and leaf chamber measurements showed a higher photosynthetic activity of leaves exposed to 100 μg NH3 m−3. These leaves showed also a larger leaf conductance and a larger uptake rate of NH3 than leaves exposed to 50 μg m−3 NH3 or filtered air. The long-term NH3 exposure did not induce an internal resistance against NH3 transport in the leaf, nor did it affect the leaf cuticle. So, not only at a short time exposure, but also at a long-term exposure NH3 uptake into leaves can be calculated from data on the boundary layer and stomatal resistance for H2O and ambient NH3-concentration. Furthermore, the NH3 exposure had no effect on the relation between CO2-assimilation and stomatal conductance, indicating that NH3 in concentrations up to 100 μg m−3 has no direct effect on stomatal behaviour; for example, by affecting the guard or contiguous cells of the stomata.  相似文献   

8.
The effects of K+ concentration, light intensity and CO2 levels on the volume of Commelina communis L. guard cell protoplasts were studied. Two degrees of swelling response were observed, both dependent on an external supply of K+, but not necessarily on the supply of a permeant anion. The presence of K+ itself, independent of light or CO2 level, stimulated swelling at a relatively slow rate. When K+, light and low CO2 conditions were supplied together, the swelling was relatively rapid and of high magnitude. The rapid swelling was specific for K+ and Rb+ giving a half maximal effect after 2 h at a KCl concentration of about 18 mmol m−3. The addition of CaCl2 at 1 mol m−3 inhibited K+-dependent swelling under all conditions tested. The response to light and low CO2 levels by Commelina guard cell protoplasts is thought to reflect a high degree of physiological integrity.  相似文献   

9.
The preference of paddy rice for NH4+ rather than NO3- is associated with its tolerance to low pH since a rhizosphere acidification occurs during NH4+ absorption. However, the adaptation of rice root to low pH has not been fully elucidated. This study investigated the acclimation of plasma membrane H+-ATPase of rice root to low pH. Rice seedlings were grown either with NH4+ or NO3-. For both nitrogen forms, the pH value of nutrient solutions was gradually adjusted to pH 6.5 or 3.0. After 4 d cultivation, hydrolytic H+-ATPase activity, V max, K m, H+-pumping activity, H+ permeability and pH gradient across the plasma membrane were significantly higher in rice roots grown at pH 3.0 than at 6.5, irrespective of the nitrogen forms supplied. The higher activity of plasma membrane H+-ATPase of adapted rice roots was attributed to the increase in expression of OSA1, OSA3, OSA7, OSA8 and OSA9 genes, which resulted in an increase of H+-ATPase protein concentration. In conclusion, a high regulation of various plasma membrane H+-ATPase genes is responsible for the adaptation of rice roots to low pH. This mechanism may be partly responsible for the preference of rice plants to NH4+ nutrition.  相似文献   

10.
The general amino acid permease, Gap1, of Saccharomyces cerevisiae is very active in cells grown on proline as the sole nitrogen source. Adding NH4+ to the medium triggers inactivation and degradation of the permease via a regulatory process involving Npi1p/Rsp5p, a ubiquitin–protein ligase. In this study, we describe several mutations affecting the C-terminal region of Gap1p that render the permease resistant to NH4+-induced inactivation. An in vivo isolated mutation ( gap1 pgr  ) causes a single Glu→Lys substitution in an amino acid context similar to the DXKSS sequence involved in ubiquitination and endocytosis of the yeast α-factor receptor, Ste2p. Another replacement, substitution of two alanines for a di-leucine motif, likewise protects the Gap1 permease against NH4+-induced inactivation. In mammalian cells, such a motif is involved in the internalization of several cell-surface proteins. These data provide the first indication that a di-leucine motif influences the function of a plasma membrane protein in yeast. Mutagenesis of a putative phosphorylation site upstream from the di-leucine motif altered neither the activity nor the regulation of the permease. In contrast, deletion of the last eleven amino acids of Gap1p, a region conserved in other amino acid permeases, conferred resistance to NH4+ inactivation. Although the C-terminal region of Gap1p plays an important role in nitrogen control of activity, it was not sufficient to confer this regulation to two NH4+-insensitive permeases, namely the arginine (Can1p) and uracil (Fur4p) permeases.  相似文献   

11.
Abstract A consortium was enriched from a humisol incubated with 3.6 kPa CH4 and NH4+. This consortium oxidized NH4+ to NO2 and NO3 (NO3/NO2 ratio about 20) with smaller amounts of N2O. This oxidation stopped in the stationary phase after depletion of CH4. CH3OH or CO2 did not support oxidation. Growth and resting cell experiments suggested that nitrification was associated with methanotrophic activity and that chemoautotrophic nitrifiers were absent.  相似文献   

12.
Rice ( Oryza sativa L. cv. IR72) was grown at three different CO2 concentrations (ambient, ambient + 200 μmol mol−1, ambient + 300 μmol mol−1) at two different growth temperatures (ambient, ambient + 4°C) from sowing to maturity to determine longterm photosynthetic acclimation to elevated CO2 with and without increasing temperature. Single leaves of rice showed a cooperative enhancement of photosynthetic rate with elevated CO2 and temperature during tillering, relative to the elevated CO2 condition alone. However, after flowering, the degree of photosynthetic stimulation by elevated CO2 was reduced for the ambient + 4°C treatment. This increasing insensitivity to CO2 appeared to be accompanied by a reduction in ribulose-1.5-bisphosphate carboxylase/oxygenase (Rubisco) activity and/or concentration as evidenced by the reduction in the assimilation (A) to internal CO2 (C1) response curve. The reproductive response (e.g. percent filled grains, panicle weight) was reduced at the higher growth temperature and presumably reflects a greater increase in floral sterility. Results indicate that while CO2 and temperature could act synergistically at the biochemical level, the direct effect of temperature on floral development with a subsequent reduction in carbon utilization may change sink strength so as to limit photosynthetic stimulation by elevated CO2 concentration.  相似文献   

13.
Carbon and nitrogen partitioning was examined in a wild-type and a nitrate reductase-deficient mutant (A317) of Pisum sativum L. (ev. Juneau), effectively inoculated with two strains of Rhizobium leguminosarum (128C23 and 128C54) and grown hydroponically in medium without nitrogen for 21 days, followed by a further 7 days in medium without and with 5 mM NH4NO3. In wild-type symbioses the application of NH4NO3 significantly reduced nodule growth, nitrogenase (EC 1.7.99.2) activity, nodule carbohydrates (soluble sugars and starch) and allocation of [14C]-labelled (NO3, NH4+, amino acids) in roots. In nodules, there was a decline in amino acids together with an increase in inorganic nitrogen concentration. In contrast, symbioses involving A317 exhibited no change in nitrogenase activity or nodule carbohydrates, and the concentrations of all nitrogenous solutes measured (including asparagine) in roots and nodules were enhanced. Photosynthate allocation to the nodule was reduced in the 128C23 symbiosis. Nitrite accumulation was not detected in any case. These data cannot be wholly explained by either the carbohydrate deprivation hypothesis or the nitrite hypothesis for the inhibition of symbiotic nitrogen fixation by combined nitrogen. Our result with A317 also provided evidence against the hypothesis that NO3 and NH4+ or its assimilation products exert a direct effect on nitrogenase activity. It is concluded that more than one legume host and Rhizobium strain must be studied before generalizations about Rhizobium /legume interactions are made.  相似文献   

14.
Nodulated and unnodulated soybean plants ( Glycine max (L.) Merr. cv. Amsoy 71) were grown in nutrient solution either lacking or containing N. Nodulated plants, dependent on N2 fixation, exhibited a generalized N-stress and were less vigorous than unnodulated plants dependent on inorganic N assimilation.
Starting at preflowering throughout mid pod-filling, NH4+ absorption, expressed on the basis of root dry weight, was determined for intact nodulated and unnodulated plants in short-term kinetic experiments. Depletion of NH4+ was measured from the liquid phase of a mist chamber. Maximum NH4+ absorption occurred for both nodulated and unnodulated plants during vegetative growth. A pattern of progressive decrease in NH4+ absorption was similar in nodulated and unnodulated plants, however. NH4+ absorption was consistently greater in unnodulated plants. Simultaneous measurements of C2H2 reduction from the gas phase of the mist chamber revealed and 41-day-old plants, corresponding to late flowering and early pod-filling.  相似文献   

15.
Plants grown in an environment of elevated CO2 and temperature often show reduced CO2 assimilation capacity, providing evidence of photosynthetic downregulation. The aim of this study was to analyse the downregulation of photosynthesis in elevated CO2 (700 µmol mol−1) in nodulated alfalfa plants grown at different temperatures (ambient and ambient + 4°C) and water availability regimes in temperature gradient tunnels. When the measurements were taken in growth conditions, a combination of elevated CO2 and temperature enhanced the photosynthetic rate; however, when they were carried out at the same CO2 concentration (350 and 700 µmol mol−1), elevated CO2 induced photosynthetic downregulation, regardless of temperature and drought. Intercellular CO2 concentration measurements revealed that photosynthetic acclimation could not be accounted for by stomatal limitations. Downregulation of plants grown in elevated CO2 was a consequence of decreased carboxylation efficiency as a result of reduced rubisco activity and protein content; in plants grown at ambient temperature, downregulation was also induced by decreased quantum efficiency. The decrease in rubisco activity was associated with carbohydrate accumulation and depleted nitrogen availability. The root nodules were not sufficiently effective to balance the source–sink relation in elevated CO2 treatments and to provide the required nitrogen to counteract photosynthetic acclimation.  相似文献   

16.
17.
Abstract: A continuous dual 13CO2 and 15NH415NO3 labelling experiment was undertaken to determine the effects of ambient (350μmol mol-1) or elevated (700μmol mol-1) atmospheric CO2 concentrations on C and N uptake and allocation within 3-year-old beech ( Fagus sylvatica L.) during leafing. After six weeks of growth, total carbon uptake was increased by 63 % (calculated on total C content) under elevated CO2 but the carbon partitioning was not altered. 56 % of the new carbon was found in the leaves. On a dry weight basis was the content of structural biomass in leaves 10 % lower and the lignin content remained unaffected under elevated as compared to ambient [CO2]. Under ambient [CO2] 37 %, and under elevated [CO2] 51 %, of the lignin C of the leaves derived from new assimilates. For both treatments, internal N pools provided more than 90 % of the nitrogen used for leaf-growth and the partitioning of nitrogen was not altered under elevated [CO2]. The C/N ratio was unaffected by elevated [CO2] at the whole plant level, but the C/N ratio of the new C and N uptake was increased by 32 % under elevated [CO2].  相似文献   

18.
Photosynthetic CO2-fixation, chlorophyll content, growth rate and nitrate reductase activity were used to examine the influence of NH+4-N and NO3-N on Sphagnum magellanicum cultivated under defined conditions in phytotrons. NO3-concentrations up to 322 μ M were found to be favourable. Increased NH+4 concentrations, however, resulted in growth inhibition and decreased chlorophyll content at concentrations ≧ 255 μ M ; e.g. 600 μ M NH+4 caused a 20% reduction of nitrate reductase activity and net photosynthesis. For raised bog Sphagna an improved standard nutrient solution is proposed with the following ion concentrations (μ M ): 55 Na+; 17 K+; 95 NH+4; 22 Ca2+; 22 Mg2+; 2 Fe3+; 20 Cl; 100 NO3; 57 SO2-4; 7.4 H2PO4; trace elements: A-Z solution (Hoagland) 50 μl 1000 ml−1; pH 5.8.  相似文献   

19.
Plant responses to elevated CO2 can be modified by many environmental factors, but very little attention has been paid to the interaction between CO2 and changes in vapour pressure deficit (VPD). Thirty-day-old alfalfa plants ( Medicago sativa L. cv. Aragón), which were inoculated with Sinorhizobium meliloti 102F78 strain, were grown for 1 month in controlled environment chambers at 25/15°C, 14 h photoperiod, and 600 µmol m−2 s−1 photosynthetic photon flux (PPF), using a factorial combination of CO2 concentration (400 µmol mol−1 or 700 µmol mol−1) and vapour pressure deficit (0.48 kPa or 1.74 kPa, which corresponded to relative humidities of 85% and 45% at 25°C, respectively). Elevated CO2 strongly stimulated plant growth under high VPD conditions, but this beneficial effect was not observed under low VPD. Under low VPD, elevated CO2 also did not enhance plant photosynthesis, and plant water stress was greatest for plants grown at elevated CO2 and low VPD. Moreover, plants grown under elevated CO2 and low VPD had a lower leaf soluble protein and photosynthetic activity (photosynthetic rate and carboxylation efficiency) than plants grown under elevated CO2 and high VPD. Elevated CO2 significantly increased leaf adaxial and abaxial temperatures. Because the effects of elevated CO2 were dependent on vapour pressure deficit, VPD needs to be controlled in experiments studying the effect of elevated CO2 as well as considered in the extrapolations of results to a warmer, high-CO2 world.  相似文献   

20.
Variation in stomatal development and physiology of mature leaves from Alnus glutinosa plants grown under reference (current ambient, 360 μmol mol−1 CO2) and double ambient (720 μmol mol−1 CO2) carbon dioxide (CO2) mole fractions is assessed in terms of relative plant growth, stomatal characters (i.e. stomatal index and density) and leaf photosynthetic characters. This is the first study to consider the effects of elevated CO2 concentration on the distribution of stomata and epidermal cells across the whole leaf and to try to ascertain the cause of intraleaf variation. In general, a doubling of the atmospheric CO2 concentration enhanced plant growth and significantly increased stomatal index. However, there was no significant change in relative stomatal density. Under elevated CO2 concentration there was a significant decrease in stomatal conductance and an increase in assimilation rate. However, no significant differences were found for the maximum rate of carboxylation ( V cmax) and the light saturated rate of electron transport ( J max) between the control and elevated CO2 treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号