首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Weiss WR  Jiang CG 《PloS one》2012,7(2):e31247
Live attenuated malaria vaccines are more potent than the recombinant protein, bacterial or viral platform vaccines that have been tested, and an attenuated sporozoite vaccine against falciparum malaria is being developed for humans. In mice, attenuated malaria sporozoite vaccines induce CD8(+) T cells that kill parasites developing in the liver. We were curious to know if CD8(+) T cells were also important in protecting primates against malaria. We immunized 9 rhesus monkeys with radiation attenuated Plasmodium knowlesi sporozoites, and found that 5 did not develop blood stage infections after challenge with live sporozoites. We then injected 4 of these protected monkeys with cM-T807, a monoclonal antibody to the CD8 molecule which depletes T cells. The fifth monkey received equivalent doses of normal IgG. In 3 of the 4 monkeys receiving cM-T807 circulating CD8(+) T cells were profoundly depleted. When re-challenged with live sporozoites all 3 of these depleted animals developed blood stage malaria. The fourth monkey receiving cM-T807 retained many circulating CD8(+) T cells. This monkey, and the vaccinated monkey receiving normal IgG, did not develop blood stage malaria at re-challenge with live sporozoites. Animals were treated with antimalarial drugs and rested for 4 months. During this interval CD8(+) T cells re-appeared in the circulation of the depleted monkeys. When all vaccinated animals received a third challenge with live sporozoites, all 5 monkeys were once again protected and did not develop blood stage malaria infections. These data indicate that CD8(+) T cells are important effector cells protecting monkeys against malaria sporozoite infection. We believe that malaria vaccines which induce effector CD8+ T cells in humans will have the best chance of protecting against malaria.  相似文献   

2.
BACKGROUND: A survey of malaria antibodies was carried out over 7 years and a total of 777 serum samples from wild monkeys were collected in three distinct ecological areas of Brazil where autochthonous malaria has been reported: the 'Cerrado' (similar to savanna), the Atlantic Forest and the Atlantic Semideciduous Forest. METHODS: We carried out enzyme-linked immunosorbent assay to investigate the presence of IgG antibodies against peptides of the circumsporozoite protein (CSP) repeat region of 'classic'Plasmodium vivax, P. vivax VK247, human P. vivax-like/P. simiovale, P. brasilianum/P. malariae and P. falciparum. We also carried out immunofluorescence assay with asexual forms of P. vivax, P. malariae and P. falciparum. RESULTS: The high prevalence of antibodies against CSP in all areas indicates that the monkeys had intense contact with sporozoites from infected anophelines. The immune response against asexual forms of Plasmodium in the monkeys from the Atlantic Forest indicates the development of the infection. CONCLUSIONS: We discuss the possibility of monkeys being malaria reservoirs in non-endemic areas.  相似文献   

3.
Using newer vaccine platforms which have been effective against malaria in rodent models, we tested five immunization regimens against Plasmodium knowlesi in rhesus monkeys. All vaccines included the same four P. knowlesi antigens: the pre-erythrocytic antigens CSP, SSP2, and erythrocytic antigens AMA1, MSP1. We used four vaccine platforms for prime or boost vaccinations: plasmids (DNA), alphavirus replicons (VRP), attenuated adenovirus serotype 5 (Ad), or attenuated poxvirus (Pox). These four platforms combined to produce five different prime/boost vaccine regimens: Pox alone, VRP/Pox, VRP/Ad, Ad/Pox, and DNA/Pox. Five rhesus monkeys were immunized with each regimen, and five Control monkeys received a mock vaccination. The time to complete vaccinations was 420 days. All monkeys were challenged twice with 100 P. knowlesi sporozoites given IV. The first challenge was given 12 days after the last vaccination, and the monkeys receiving the DNA/Pox vaccine were the best protected, with 3/5 monkeys sterilely protected and 1/5 monkeys that self-cured its parasitemia. There was no protection in monkeys that received Pox malaria vaccine alone without previous priming. The second sporozoite challenge was given 4 months after the first. All 4 monkeys that were protected in the first challenge developed malaria in the second challenge. DNA, VRP and Ad5 vaccines all primed monkeys for strong immune responses after the Pox boost. We discuss the high level but short duration of protection in this experiment and the possible benefits of the long interval between prime and boost.  相似文献   

4.
A 175-erythrocyte-binding protein (EBA-175) conserved high-activity binding peptide (HABP), called 1783 (nonimmunogenic, nonprotective against Plasmodium falciparum malaria), was analyzed for antigenic and protective activity in Aotus monkeys, together with several of its analogues. 1H NMR studies of peptides 17912, 14016, and 22814 allowed their structure to be related to their biological function. These peptides showed helical regions having differences in their position and length. Nonimmunogenic, nonprotective peptides 1783 and 17912 showed an extensive helical region, while the 22814 immunogenic protective peptide's alpha-helix was found in the N-terminal region. This suggests that the more flexible C-terminal region will allow better interaction between these peptides and immune system molecules as well as relating these peptides' three-dimensional structure to their immunogenicity and protective activity, thus leading to a more rational development of the new malaria multicomponent vaccine.  相似文献   

5.
Blood infection by the simian parasite, Plasmodium simium, was identified in captive (n = 45, 4.4%) and in wild Alouatta clamitans monkeys (n = 20, 35%) from the Atlantic Forest of southern Brazil. A single malaria infection was symptomatic and the monkey presented clinical and haematological alterations. A high frequency of Plasmodium vivax-specific antibodies was detected among these monkeys, with 87% of the monkeys testing positive against P. vivax antigens. These findings highlight the possibility of malaria as a zoonosis in the remaining Atlantic Forest and its impact on the epidemiology of the disease.  相似文献   

6.
We have previously developed a new malaria vaccine delivery system based on the baculovirus dual expression system (BDES). In this system, expression of malaria antigens is driven by a dual promoter consisting of the baculovirus-derived polyhedrin and mammal-derived cytomegalovirus promoters. To test this system for its potential as a vaccine against human malaria parasites, we investigated immune responses against the newly developed BDES-based Plasmodium falciparum circumsporozoite protein vaccines (BDES-PfCSP) in mice and Rhesus monkeys. Immunization of mice with BDES-PfCSP induced Th1/Th2-mixed type immune responses with high PfCSP-specific antibody (Ab) titers, and provided significant protection against challenge from the bites of mosquitoes infected with a transgenic P. berghei line expressing PfCSP. Next, we evaluated the immunogenicity of the BDES-PfCSP vaccine in a rhesus monkey model. Immunization of BDES-PfCSP elicited high levels of anti-PfCSP Ab responses in individual monkeys. Moreover, the sera from the immunized monkeys remarkably blocked sporozoite invasion of HepG2 cells. Taken together with two animal models, our results indicate that this novel vaccine platform (BDES) has potential clinical application as a vaccine against malaria.  相似文献   

7.
A vaccine against malaria is desperately needed, and Aotus monkeys are highly susceptible to experimental infection with malarial parasites. A thorough analysis of this monkey’s immune system molecules was thus undertaken in our institute. Cloning and sequencing, followed by three-dimensional analysis, has revealed high homology with some HLA-DRB1 molecules in terms of their peptide binding region pockets. Molecules such as HLA-DRB1*03, 11, 08, and HLA-DRB1*04 are so similar to Aotus MHC-DRB molecules that peptides identified as binding to these molecules and inducing protective immunity in these monkeys could be used in humans without further refinement, while small modifications seem to be needed for those binding to HLA-DRB1*07, HLA-DRB1*15, 16, and HLA-DRB1*10-like molecules, making this New World monkey an excellent model for tailor-made vaccine development, especially against malaria.  相似文献   

8.
Developing a logical and rational methodology for obtaining vaccines, especially against the main parasite causing human malaria (P. falciparum), consists of blocking receptor-ligand interactions. Conserved peptides derived from proteins involved in invasion and having high red blood cell binding ability have thus been identified. Immunization studies using Aotus monkeys have revealed that these peptides were neither immunogenic nor protection inducing. When modified in their critical binding residues, previously identified by Glycine scanning, some of these peptides were immunogenic and non-protection inducers; others induced short-lived antibodies whilst a few were both immunogenic and protection inducing. However, very few of these modified high activity binding peptides (HABPs) reproducibly induced protection without inducing antibody production, but with high cytokine liberation, suggesting that cellular mechanisms had been activated in the protection process. The three-dimensional structure of these peptides inducing protection without producing antibodies was determined by 1H-NMR. Their HLA-DRbeta1* molecule binding ability was also determined to ascertain association between their 3D structure and ability to bind to Major Histocompatibility Complex Class-II molecules (MHC-II). 1H Nuclear Magnetic Resonance analysis and structure calculations clearly showed that these modified HABPs inducing protective cellular immune responses (but not producing antibodies against malaria) adopted special structural configuration to fit into the MHC II-peptide-TCR complex. A different orientation for P7 and P8 TCR contacting residues was clearly recognized when comparing their structure with modified peptides, which induced high antibody titers and protection, suggesting that these residues are involved in activating the immune system associated with antibody production and protection.  相似文献   

9.
Naturally occurring malaria, arbovirus infection and hepatitis in monkeys can be a hazard for the investigator and might interfere with the outcome of experiments. 63 young adult Macaca fascicularis from Malaysia were screened for these infections. About 1 year after their arrival in France, parasitaemia due to Plasmodium spp., was present in 6.4% of the animals and specific antibodies in 55.5%. 19 of 35 initially positive monkeys were tested again 2 years later. Parasitaemia was found in 1 of 4 monkeys and antibodies in 11 of 19 monkeys which were initially positive. 9 of the monkeys initially tested had low titres of antibodies to the Flavivirus genus. All animals were negative for the hepatitis B surface antigen and anti-HBc. The prevalence of IgG antibodies against hepatitis A was 46.0%. The implications in terms of control are discussed.  相似文献   

10.
The aim of obtaining novel vaccine candidates against malaria and other transmissible diseases can be partly based on selecting non-polymorphic peptides from relevant antigens of pathogens, which have to be then precisely modified for inducing a protective immunity against the disease. Bearing in mind the high degree of the MSA-221–40 peptide primary structure’s genetic conservation among malaria species, and its crucial role in the high RBC binding ability of Plasmodium falciparum (the main agent causing malaria), structurally defined probes based on non-natural peptide-bond isosteres were thus designed. Thus, two peptide mimetics were obtained (so-called reduced amide pseudopeptides), in which naturally made amide bonds of the 30FIN32-binding motif of MSA-2 were replaced with ψ–[CH2–NH] methylene amide isostere bonds, one between the F–I and the second between I–N amino acid pairs, respectively, coded as ψ-128 ψ-130. These peptide mimetics were used to produce poly- and monoclonal antibodies in Aotus monkeys and BALB/c mice. Parent reactive mice-derived IgM isotype cell clones were induced to Ig isotype switching to IgG sub-classes by controlled in vitro immunization experiments. These mature isotype immunoglobulins revealed a novel epitope in the MSA-225–32 antigen and two polypeptides of rodent malaria species. Also, these antibodies’ functional activity against malaria was tested by in vitro assays, demonstrating high efficacy in controlling infection and evidencing neutralizing capacity for the rodent in vivo malaria infection. The neutralizing effect of antibodies induced by site-directed designed peptide mimetics on Plasmodium’s biological development make these pseudopeptides a valuable tool for future development of immunoprophylactic strategies for controlling malarial infection.  相似文献   

11.
Apical membrane antigen-1 (AMA-1) is an integral Plasmodium falciparum malaria parasite membrane protein. Peptides having high activity binding to human red blood cells have been identified in this protein. One of them, peptide 4325, with the amino acid sequence MIKSAFLPTGAFKADRYKSH, for which critical binding residues have already been defined (underlined), is conserved and non-immunogenic. Its critical binding residues were changed for amino acids having similar mass but different charge to change such immunological properties. These changes rendered some peptides immunogenic and protective against experimental challenge in Aotus monkeys. Three-dimensional models of peptide 4325 and its analogues, 20032 and 20034, were calculated from NMR experiments with distance geometry and restrained molecular dynamic methods. Non-immunogenic, non-protective peptide 4325 showed differences in its secondary structure with respect to protective, immunogenic peptides 20032 and 20034. Such data suggest that these modifications could have converted non-immunogenic peptides into immunogenic, protective ones, making them excellent candidates for a multi-component subunit synthetic malaria vaccine.  相似文献   

12.
T-cell receptor gene rearrangements were studied in Aotus monkeys developing high antibody titers and sterilizing immunity against the Plasmodium falciparum malaria parasite upon vaccination with the modified synthetic peptide 24112, which was identified in the Merozoite Surface Protein 2 (MSP-2) and is known to bind to HLA-DRβ1*0403 molecules with high capacity. Spectratyping analysis showed a preferential usage of Vβ12 and Vβ6 TCR gene families in 67% of HLA-DRβ1*0403-like genotyped monkeys. Docking of peptide 24112 into the HLA-DRβ1*0401–HA peptide–HA1.7TCR complex containing the VDJ rearrangements identified in fully protected monkeys showed a different structural signature compared to nonprotected monkeys. These striking results show the exquisite specificity of the TCR/pMHCII complex formation needed for inducing sterilizing immunity and provide important hints for a logical and rational methodology to develop multiepitopic, minimal subunit-based synthetic vaccines against infectious diseases, among them malaria.  相似文献   

13.
The thrombospondin related adhesion protein (TRAP) is a malaria pre-erythrocytic antigen currently pursued as malaria vaccine candidate to Plasmodium falciparum. In this study, a long synthetic peptide (LSP) representing a P. vivax TRAP fragment involved in hepatocyte invasion was formulated in both Freund and Montanide ISA 720 adjutants and administered by IM and subcutaneous routes to BALB/c mice and Aotus monkeys. We measured specific humoral immune responses in both animal species and performed a sporozoite challenge in Aotus monkeys to assess the protective efficacy of the vaccine. After immunization both mice and Aotus seroconverted as shown by ELISA, and the specific anti-peptide antibodies cross reacted with the parasite in IFAT assays. Only two out of six immunized animals became infected after P. vivax sporozoite challenge as compared with four out of six animals from the control group. These results suggest that this TRAP fragment has protective potential against P. vivax malaria and deserves further studies as vaccine candidate.  相似文献   

14.
Splenectomised squirrel monkeys (Saimiri sciureus) are increasingly being used as an experimental host for human malaria studies, notably for the assessment of candidate vaccines against Plasmodium falciparum blood-stage infection. Recently, S. sciureus monkeys in our primate-breeding colony were reported to be asymptomatic carriers of a putative Haemobartonella species. Patent haemobartonella infection is frequently activated following splenectomy, and may interfere with studies on the course of P. falciparum parasitaemia in these animals. Here, we show by 16S rRNA gene sequence analysis that this wall-less bacterium is not a rickettsia but, instead, is a haemotrophic mycoplasma. Haemotrophic mycoplasmas are a newly identified group of mycoplasmas that parasitise the surfaces of erythrocytes of a wide variety of vertebrate hosts.  相似文献   

15.
Plasmodium falciparum malaria protein peptides were synthesised in the search for more effective routes for inducing a protective immune response against this deadly parasite and this information has been associated with such molecules' three-dimensional structure. These peptides had high red blood cell binding activity and their carboxy- and amino-terminal extremes were elongated for determining their immunogenic and protection-inducing activity against this disease in the Aotus monkey experimental model. 1H-NMR was used for analysing their three-dimensional structure; FAST ELISA, immunofluorescence antibody test, and Western blot were used for identifying their antibody inducing capacity and these previously immunised Aotus were inoculated with a highly infective P. falciparum strain to determine whether these elongated peptides were able to induce protection. This was aimed at establishing an association or correlation between long peptides' three-dimensional structure and their immunogenic and protection-inducing response in these monkeys. Peptides 20026 (25 residue), 20028 (30 residue), and 20030 (35 residues) were synthesised based on elongating the amino-terminal region of the 10022 highly immunogenic and protection-inducing modified peptide. 1H-NMR studies revealed that the first three had Classical type III beta-turn structures, different from the 20-amino acid long modified peptide 10022 which had a distorted type III beta-turn. Humoral immune response analysis showed that even when some antibodies could be generated against the parasite, none of the immunised Aotus could be protected with elongated peptides suggesting that elongating them eliminated modified peptide 10022 immunogenic and protection-inducing capacity.  相似文献   

16.
Six different species of nonhuman primates housed at the CIRMF Primate Center, cynomolgus monkeys (Macaca fascicularis), rhesus monkeys (Macaca mulatta), mandrills (Mandrillus sphinx), vervets (Cercopithecus aethiops pygerythrus), chimpanzees (Pan troglodyte) and baboons (Papio hamadryas), were evaluated for their natural killer cell activity and for the ability of their peripheral blood mononuclear cells to proliferate in response to known mitogens (concanavalin A, phytohemagglutinin and staphylococcal enterotoxin A) and to react with a panel of mouse monoclonal antibodies directed against human leukocyte surface antigens. Basic information on normal immune functions in these primates is important because of their use as experimental animal models for the study of human diseases such as acquired immunodeficiency syndrome (AIDS), hepatitis, loiasis and malaria.  相似文献   

17.
The relationship among geographic origin, phenotype, karyotype, and susceptibility of owl monkeys to 2 strains of Plasmodium falciparum was investigated. Owl monkeys from Columbia and Panama were both susceptible to fatal infections with the Asian FVO (Vietnam-Oak Knoll) strain of P. falciparum. However, when inoculated with the African FUP (Uganda-Palo Alto) strain, most Colombian owl monkeys developed fatal or potentially fatal (bled out with parasitemias of over 25%) infections, but Panamanian monkeys generally survived. Colombian and Panamanian monkeys that spontaneously recovered from malaria infection were phenotypically indistinguishable from those which died. Karyotype analysis revealed that animals considered in this study were either Karyotype II (54 chromosomes) or II (53 chromosomes). Karyotype differences between individual monkeys did not correlate with increased susceptibility or resistance to malaria. Thus, the country of origin of owl monkeys appears to play a more important role in host susceptibility to malaria infection than karyotype.  相似文献   

18.
Aotus monkeys offer one of the few models that can be used for the evaluation of the immunogenicity and efficacy of new vaccine candidates against the human malarias, Plasmodium falciparum and Plasmodium vivax. However, the tools available for evaluation of the immune responses in these New World primates are still limited. In the present study, a previously selected set of monoclonal antibodies that were raised against human T cell determinants and were reactive with at least one other primate species was investigated for its reactivity with Aotus lymphocytes using FACS analysis, indirect immunofluorescence (IFA) and immunohistochemistry. From a panel of 19 mAb, six were found to react consistently with Aotus lymphocytes using FACS analysis. Further evaluation of the mAb using IFA confirmed these findings. Analysis of the selected mAb on spleen sections of Aotus monkeys identified one anti-CD4 and one anti-CD8 mAb that can be used for immunohistochemical studies. The set of mAb identified in this study can be used for the detection of various T lymphocyte markers in peripheral blood and in tissues of Aotus monkeys. Together with data published by others, mAb are now identified for detection of six different markers of Aotus T lymphocytes. These mAb are very valuable for the characterisation of immune responses after vaccination and infection in the Aotus malaria models.  相似文献   

19.
Levels of platelets and other hematological values were monitored in 21 Saimiri and 12 Aotus monkeys over a period of three weeks post-infection with monkey-adapted Indochina CDC-1 strain of Plasmodium falciparum. In both Saimiri sciureus boliviensis and Aotus nancymai karyotype-1 monkeys the severest thrombocytopenia was observed at 14 days post-infection coinciding with peak parasitemia, neutropenia, lymphocytosis, and anemia associated with severe hemoglobinemia and elevated fibrinogen degeneration products(FDP's). MCH and MCV profiles in Aotus monkeys decreased with ascending parasitemia. In contrast, these parameters in Saimiri were characterized by a significant compensatory increase correlating with parasitemia. In general, thrombocytopenia was one of the earliest clinical manifestations of the infection with the platelets returning to normal levels shortly after peak parasitemia at 14 days. Platelet kinetics had a strong correlation with hematologic and parasitologic values in the Aotus model. No consistent associations were observed between platelet kinetics and other parameters in the Saimiri model. These data indicate that the Aotus model for malaria is more predictable than the Saimiri. Further, platelet turnover rates and recovery provide a useful prognostic parameter during malaria infection. The results are discussed in relation to the value of the two species of monkeys as models for the pathogenesis of human malaria.  相似文献   

20.
Plasmodium knowlesi infected rhesus monkeys were employed for investigating brain tissue damage in experimentally induced cerebral malaria. Light microscopic studies revealed parasitic infiltration of virtually all the regions of CNS. Electron microscopic observations confirmed the light microscopic findings. These studies further revealed the presence of macrophages in the blood vessels of infected monkeys. In conclusion, the pathogenesis of cerebral malaria seems to be an outcome of a typical triad consisting of: (1) mechanical obstruction of the blood capillaries by parasitized RBCs; (2) biochemical events, involving free radicals, and (3) immunological dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号