首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
The identification of optimal genotypes that result in improved production of recombinant metabolites remains an engineering conundrum. In the present work, various strategies to reengineer central metabolism in Escherichia coli were explored for robust synthesis of flavanones, the common precursors of plant flavonoid secondary metabolites. Augmentation of the intracellular malonyl coenzyme A (malonyl-CoA) pool through the coordinated overexpression of four acetyl-CoA carboxylase (ACC) subunits from Photorhabdus luminescens (PlACC) under a constitutive promoter resulted in an increase in flavanone production up to 576%. Exploration of macromolecule complexes to optimize metabolic efficiency demonstrated that auxiliary expression of PlACC with biotin ligase from the same species (BirAPl) further elevated flavanone synthesis up to 1,166%. However, the coexpression of PlACC with Escherichia coli BirA (BirAEc) caused a marked decrease in flavanone production. Activity improvement was reconstituted with the coexpression of PlACC with a chimeric BirA consisting of the N terminus of BirAEc and the C terminus of BirAPl. In another approach, high levels of flavanone synthesis were achieved through the amplification of acetate assimilation pathways combined with the overexpression of ACC. Overall, the metabolic engineering of central metabolic pathways described in the present work increased the production of pinocembrin, naringenin, and eriodictyol in 36 h up to 1,379%, 183%, and 373%, respectively, over production with the strains expressing only the flavonoid pathway, which corresponded to 429 mg/liter, 119 mg/liter, and 52 mg/liter, respectively.  相似文献   

2.

Background

Fatty acids are indispensable constituents of mycolic acids that impart toughness & permeability barrier to the cell envelope of M. tuberculosis. Biotin is an essential co-factor for acetyl-CoA carboxylase (ACC) the enzyme involved in the synthesis of malonyl-CoA, a committed precursor, needed for fatty acid synthesis. Biotin carboxyl carrier protein (BCCP) provides the co-factor for catalytic activity of ACC.

Methodology/Principal Findings

BPL/BirA (Biotin Protein Ligase), and its substrate, biotin carboxyl carrier protein (BCCP) of Mycobacterium tuberculosis (Mt) were cloned and expressed in E. coli BL21. In contrast to EcBirA and PhBPL, the ∼29.5 kDa MtBPL exists as a monomer in native, biotin and bio-5′AMP liganded forms. This was confirmed by molecular weight profiling by gel filtration on Superdex S-200 and Dynamic Light Scattering (DLS). Computational docking of biotin and bio-5′AMP to MtBPL show that adenylation alters the contact residues for biotin. MtBPL forms 11 H-bonds with biotin, relative to 35 with bio-5′AMP. Docking simulations also suggest that bio-5′AMP hydrogen bonds to the conserved ‘GRGRRG’ sequence but not biotin. The enzyme catalyzed transfer of biotin to BCCP was confirmed by incorporation of radioactive biotin and by Avidin blot. The Km for BCCP was ∼5.2 µM and ∼420 nM for biotin. MtBPL has low affinity (Kb = 1.06×10−6 M) for biotin relative to EcBirA but their Km are almost comparable suggesting that while the major function of MtBPL is biotinylation of BCCP, tight binding of biotin/bio-5′AMP by EcBirA is channeled for its repressor activity.

Conclusions/Significance

These studies thus open up avenues for understanding the unique features of MtBPL and the role it plays in biotin utilization in M. tuberculosis.  相似文献   

3.
4.
High-level expression of soluble recombinant human hemoglobin (rHb) in Escherichia coli was obtained with several hemoglobin variants. Under identical conditions, two rHbs containing the Presbyterian mutation (Asn-108→Lys) in β-globin accumulated to approximately twofold less soluble globin than rHbs containing the corresponding wild-type β-globin subunit accumulated. The β-globin Providence(asp) mutation (Lys-82→Asp) significantly improved soluble rHb accumulation compared to the wild-type β-globin subunit and restored soluble accumulation of rHbs containing the Presbyterian mutation to wild-type levels. The Providenceasp substitution introduced a negatively charged residue into the normally cationic 2,3-bisphosphoglycerate binding pocket, potentially reducing the electrostatic repulsion in the absence of the polyanion. The average soluble globin accumulation when there was coexpression of di-α-globin and β-Lys-82→Asp-globin (rHb9.1) and heme was present in at least a threefold molar excess was 36% ± 3% of the soluble cell protein in E. coli. The average total accumulation (soluble globin plus insoluble globin) was 56% ± 7% of the soluble cell protein. Fermentations yielded 6.0 ± 0.3 g of soluble rHb9.1 per liter 16 h after induction and 6.4 ± 0.2 g/liter 24 h after induction. The average total globin yield was 9.4 g/liter 16 h after induction. High-level accumulation of soluble rHb in E. coli depends on culture conditions, the protein sequence, and the molar ratio of the heme cofactor added.  相似文献   

5.
Human leptin is a 16-kDa (146-amino-acid) protein that is secreted from adipocytes and influences body weight homeostasis. In order to obtain high-level production of leptin, the human obese gene coding for leptin was expressed in Escherichia coli BL21(DE3) under the strong inducible T7 promoter. The recombinant leptin was produced as inclusion bodies in E. coli, and the recombinant leptin content was as high as 54% of the total protein content. For production of recombinant human leptin in large amounts, pH-stat fed-batch cultures were grown. Expression of leptin was induced at three different cell optical densities at 600 nm (OD600), 30, 90, and 140. When cells were induced at an OD600 of 90, the amount of leptin produced was 9.7 g/liter (37% of the total protein). After simple purification steps consisting of inclusion body isolation, denaturation and refolding, and anion-exchange chromatography, 144.9 mg of leptin that was more than 90% pure was obtained from a 50-ml culture, and the recovery yield was 41.1%.  相似文献   

6.
The origin of cell nitrogen and amino acid nitrogen during growth of ruminal cellulolytic bacteria in different growth media was investigated by using 15NH3. At high concentrations of peptides (Trypticase, 10 g/liter) and amino acids (15.5 g/liter), significant amounts of cell nitrogen of Fibrobacter succinogenes BL2 (51%), Ruminococcus flavefaciens 17 (43%), and Ruminococcus albus SY3 (46%) were derived from non-NH3-N. With peptides at 1 g/liter, a mean of 80% of cell nitrogen was from NH3. More cell nitrogen was formed from NH3 during growth on cellobiose compared with growth on cellulose in all media. Phenylalanine was essential for F. succinogenes, and its 15N enrichment declined more than that of other amino acids in all species when amino acids were added to the medium.  相似文献   

7.
A novel nucleoside phosphorylation process using the food additive pyrophosphate as the phosphate source was investigated. The Morganella morganii gene encoding a selective nucleoside pyrophosphate phosphotransferase was cloned. It was identical to the M. morganii PhoC acid phosphatase gene. Sequential in vitro random mutagenesis was performed on the gene by error-prone PCR to construct a mutant library. The mutant library was introduced into Escherichia coli, and the transformants were screened for the production of 5′-IMP. One mutated acid phosphatase with an increased phosphotransferase reaction yield was obtained. With E. coli overproducing the mutated acid phosphatase, 101 g of 5′-IMP per liter (192 mM) was synthesized from inosine in an 88% molar yield. This improvement was achieved with two mutations, Gly to Asp at position 92 and Ile to Thr at position 171. A decreased Km value for inosine was responsible for the increased productivity.  相似文献   

8.
The recalcitrance of xenobiotics may be caused by an absence of transforming enzymes or by their inability to enter microbial cells. A nondestructive method for differentiating between these two possibilities is described. The solid n-alkanes octadecane (C18) and hexatriacontane (C36) were encapsulated into phosphatidylcholine bilayers (liposomes). The uptake and metabolism rates of encapsulated and unencapsulated substrates were then compared. During 1 h at 25°C, a Pseudomonas isolate took up 1.3% of radiolabeled and unencapsulated C18 (solid state) versus 23.5% of labeled and encapsulated C18. Growth at 25°C occurred with an apparent ks of 2453 ± 148 mg/liter. Liposome encapsulation decreased this Ks to 60 ± 12 mg/liter. At 34°C, growth on C18 (liquid state) occurred with an apparent Ks of 819 ± 83 mg/liter and on the readily available carbon source succinate, Ks values were 80 ± 10 and 13 ± 7 mg/liter at 25 and 34°C, respectively. At 25°C, the isolate grew on C36 with an apparent Ks of 2,698 ± 831 mg/liter. Liposome encapsulation decreased the Ks more than 60-fold to 41 ± 7 mg/liter, resulting in the complete utilization of 400 mg of C36 per liter in 16 h. Since controls excluded the metabolic utilization of phosphatidylcholine, the results clearly identify transport limitation as the cause for C36 recalcitrance.  相似文献   

9.
The health benefits of flavonoids for humans are increasingly attracting attention. Because the extraction of high-purity flavonoids from plants presents a major obstacle, interest has emerged in biosynthesizing them using microbial hosts. Eriodictyol is a flavonoid with anti-inflammatory and antioxidant activities. Its efficient synthesis has been hampered by two factors: the poor expression of cytochrome P450 and the low intracellular malonyl coenzyme A (malonyl-CoA) concentration in Escherichia coli. To address these issues, a truncated plant P450 flavonoid, flavonoid 3′-hydroxylase (tF3′H), was functionally expressed as a fusion protein with a truncated P450 reductase (tCPR) in E. coli. This allowed the engineered E. coli to produce eriodictyol from l-tyrosine by simultaneously coexpressing the fusion protein with tyrosine ammonia lyase (TAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), and chalcone isomerase (CHI). In addition, metabolic engineering was employed to enhance the availability of malonyl-CoA so as to achieve a new metabolic balance and rebalance the relative expression of genes to enhance eriodictyol accumulation. This approach made the production of eriodictyol 203% higher than that in the control strain. By using these strategies, the production of eriodictyol from l-tyrosine reached 107 mg/liter. The present work offers an approach to the efficient synthesis of other hydroxylated flavonoids from l-tyrosine or even glucose in E. coli.  相似文献   

10.
Anaerobic fermentation processes for the production of a succinate-rich animal feed supplement from raw whey were investigated with batch, continuous, and variable-volume fed-batch cultures with Anaerobiospirillum succiniciproducens. The highest succinate yield, 90%, was obtained in a variable-volume fed-batch process in comparison to 80% yield in a batch cultivation mode. In continuous culture, succinate productivity was 3 g/liter/h, and the yield was 60%. Under conditions of excess CO2, more than 90% of the whey-lactose was consumed, with an end product ratio of 4 succinate to 1 acetate. Under conditions of limited CO2, lactose was only partially consumed and lactate was the major end product, with lower levels of ethanol, succinate, and acetate. When the succinic acid in this fermentation product was added to rumen fluid, it was completely consumed by a mixed rumen population and was 90% decarboxylated to propionate on a molar basis. The whey fermentation product formed under excess CO2, which contained mainly organic acids and cells, could potentially be used as an animal feed supplement.  相似文献   

11.
Nucleoside 5′-diphosphate-X hydrolases are interesting enzymes to study due to their varied activities and structure-function relationships and the roles they play in the disposal, assimilation, and modulation of the effects of their substrates. Few of these enzymes with a preference for CDP-alcohols are known. In Yersinia intermedia suspensions prepared from cultures on Columbia agar with 5% sheep blood, we found a CDP-alcohol hydrolase liberated to Triton X-100-containing medium. Growth at 25°C was deemed optimum in terms of the enzyme-activity yield. The purified enzyme also displayed 5′-nucleotidase, UDP-sugar hydrolase, and dinucleoside-polyphosphate hydrolase activities. It was identified as the protein product (UshAYi) of the Y. intermedia ushA gene (ushAYi) by its peptide mass fingerprint and by PCR cloning and expression to yield active enzyme. All those activities, except CDP-alcohol hydrolase, have been shown to be the properties of UshA of Escherichia coli (UshAEc). Therefore, UshAEc was expressed from an appropriate plasmid and tested for CDP-alcohol hydrolase activity. UshAEc and UshAYi behaved similarly. Besides being the first study of a UshA enzyme in the genus Yersinia, this work adds CDP-alcohol hydrolase to the spectrum of UshA activities and offers a novel perspective on these proteins, which are viewed here for the first time as highly efficient enzymes with kcat/Km ratios near the theoretical maximum level of catalytic activities. The results are discussed in the light of the known structures of UshAEc conformers and the respective homology models constructed for UshAYi, and also in relation to possible biological functions. Interestingly, every Yersinia species with a sequenced genome contains an intact ushA gene, except Y. pestis, which in all its sequenced biovars contains a ushA gene inactivated by frameshift mutations.  相似文献   

12.

Background

The demand for lactic acid has been increasing considerably because of its use as a monomer for the synthesis of polylactic acid (PLA), which is a promising and environment-friendly alternative to plastics derived from petrochemicals. Optically pure l-lactic acid is essential for polymerization of PLA. The high fermentation cost of l-lactic acid is another limitation for PLA polymers to compete with conventional plastics.

Methodology/Principal Findings

A Bacillus sp. strain 2–6 for production of l-lactic acid was isolated at 55°C from soil samples. Its thermophilic characteristic made it a good lactic acid producer because optically pure l-lactic acid could be produced by this strain under open condition without sterilization. In 5-liter batch fermentation of Bacillus sp. 2–6, 118.0 g/liter of l-lactic acid with an optical purity of 99.4% was obtained from 121.3 g/liter of glucose. The yield was 97.3% and the average productivity was 4.37 g/liter/h. The maximum l-lactic acid concentration of 182.0 g/liter was obtained from 30-liter fed-batch fermentation with an average productivity of 3.03 g/liter/h and product optical purity of 99.4%.

Conclusions/Significance

With the newly isolated Bacillus sp. strain 2–6, high concentration of optically pure l-lactic acid could be produced efficiently in open fermentation without sterilization, which would lead to a new cost-effective method for polymer-grade l-lactic acid production from renewable resources.  相似文献   

13.
In eubacteria, trigger factor (TF) is the first chaperone to interact with newly synthesized polypeptides and assist their folding as they emerge from the ribosome. We report the first characterization of a TF from a psychrophilic organism. TF from Psychrobacter frigidicola (TFPf) was cloned, produced in Escherichia coli, and purified. Strikingly, cross-linking and fluorescence anisotropy analyses revealed it to exist in solution as a monomer, unlike the well-characterized, dimeric E. coli TF (TFEc). Moreover, TFPf did not exhibit the downturn in reactivation of unfolded GAPDH (glyceraldehyde-3-phosphate dehydrogenase) that is observed with its E. coli counterpart, even at high TF/GAPDH molar ratios and revealed dramatically reduced retardation of membrane translocation by a model recombinant protein compared to the E. coli chaperone. TFPf was also significantly more effective than TFEc at increasing the yield of soluble and functional recombinant protein in a cell-free protein synthesis system, indicating that it is not dependent on downstream systems for its chaperoning activity. We propose that TFPf differs from TFEc in its quaternary structure and chaperone activity, and we discuss the potential significance of these differences in its native environment.  相似文献   

14.
Shake flask and pH-controlled reactor tests were used to determine the mathematical parameters for a mixed-culture bacterial thiosalt treatment pond. Values determined were as follows: Km and Vmax (thiosulfate), 9.83 g/liter and 243.9 mg/liter per h, respectively; Ki (lead), 3.17 mg/liter; Ki (copper), 1.27 mg/liter; Q10 between 10 and 30°C, 1.95. From these parameters, the required bioxidation pond volume and residence time could be calculated. Soluble zinc (0.2 g/liter) and particulate mill products and by-products (0.25 g/liter) were not inhibitory. Correlation with an operating thiosalt biooxidation pond showed the parameters used to be valid for thiosalt concentrations up to at least 2 g/liter, lead concentrations of at least 10 mg/liter, and temperatures of >2°C.  相似文献   

15.
Ralstonia eutropha is a facultatively chemolithoautotrophic bacterium able to grow with organic substrates or H2 and CO2 under aerobic conditions. Under conditions of nutrient imbalance, R. eutropha produces copious amounts of poly[(R)-3-hydroxybutyrate] (PHB). Its ability to utilize CO2 as a sole carbon source renders it an interesting new candidate host for the production of renewable liquid transportation fuels. We engineered R. eutropha for the production of fatty acid-derived, diesel-range methyl ketones. Modifications engineered in R. eutropha included overexpression of a cytoplasmic version of the TesA thioesterase, which led to a substantial (>150-fold) increase in fatty acid titer under certain conditions. In addition, deletion of two putative β-oxidation operons and heterologous expression of three genes (the acyl coenzyme A oxidase gene from Micrococcus luteus and fadB and fadM from Escherichia coli) led to the production of 50 to 65 mg/liter of diesel-range methyl ketones under heterotrophic growth conditions and 50 to 180 mg/liter under chemolithoautotrophic growth conditions (with CO2 and H2 as the sole carbon source and electron donor, respectively). Induction of the methyl ketone pathway diverted substantial carbon flux away from PHB biosynthesis and appeared to enhance carbon flux through the pathway for biosynthesis of fatty acids, which are the precursors of methyl ketones.  相似文献   

16.
Epilithic periphyton communities were sampled at three sites on the Minnesota shoreline of Lake Superior from June 2004 to August 2005 to determine if fecal coliforms and Escherichia coli were present throughout the ice-free season. Fecal coliform densities increased up to 4 orders of magnitude in early summer, reached peaks of up to 1.4 × 105 CFU cm−2 by late July, and decreased during autumn. Horizontal, fluorophore-enhanced repetitive-PCR DNA fingerprint analyses indicated that the source for 2% to 44% of the E. coli bacteria isolated from these periphyton communities could be identified when compared with a library of E. coli fingerprints from animal hosts and sewage. Waterfowl were the major source (68 to 99%) of periphyton E. coli strains that could be identified. Several periphyton E. coli isolates were genotypically identical (≥92% similarity), repeatedly isolated over time, and unidentified when compared to the source library, suggesting that these strains were naturalized members of periphyton communities. If the unidentified E. coli strains from periphyton were added to the known source library, then 57% to 81% of E. coli strains from overlying waters could be identified, with waterfowl (15 to 67%), periphyton (6 to 28%), and sewage effluent (8 to 28%) being the major potential sources. Inoculated E. coli rapidly colonized natural periphyton in laboratory microcosms and persisted for several weeks, and some cells were released to the overlying water. Our results indicate that E. coli from periphyton released into waterways confounds the use of this bacterium as a reliable indicator of recent fecal pollution.  相似文献   

17.
18.
Its metabolic characteristics suggest that Zymobacter palmae gen. nov., sp. nov. could serve as a useful new ethanol-fermenting bacterium, but its biotechnological exploitation will require certain genetic modifications. We therefore engineered Z. palmae so as to broaden the range of its fermentable sugar substrates to include the pentose sugar xylose. The Escherichia coli genes encoding the xylose catabolic enzymes xylose isomerase, xylulokinase, transaldolase, and transketolase were introduced into Z. palmae, where their expression was driven by the Zymomonas mobilis glyceraldehyde-3-phosphate dehydrogenase promoter. When cultured with 40 g/liter xylose, the recombinant Z. palmae strain was able to ferment 16.4 g/liter xylose within 5 days, producing 91% of the theoretical yield of ethanol with no accumulation of organic acids as metabolic by-products. Notably, xylose acclimation enhanced both the expression of xylose catabolic enzymes and the rate of xylose uptake into recombinant Z. palmae, which enabled the acclimated organism to completely and simultaneously ferment a mixture of 40 g/liter glucose and 40 g/liter xylose within 8 h, producing 95% of the theoretical yield of ethanol. Thus, efficient fermentation of a mixture of glucose and xylose to ethanol can be accomplished by using Z. palmae expressing E. coli xylose catabolic enzymes.  相似文献   

19.
Identification of genetic targets able to bring about changes to the metabolite profiles of microorganisms continues to be a challenging task. We have independently developed a cipher of evolutionary design (CiED) to identify genetic perturbations, such as gene deletions and other network modifications, that result in optimal phenotypes for the production of end products, such as recombinant natural products. Coupled to an evolutionary search, our method demonstrates the utility of a purely stoichiometric network to predict improved Escherichia coli genotypes that more effectively channel carbon flux toward malonyl coenzyme A (CoA) and other cofactors in an effort to generate recombinant strains with enhanced flavonoid production capacity. The engineered E. coli strains were constructed first by the targeted deletion of native genes predicted by CiED and then second by incorporating selected overexpressions, including those of genes required for the coexpression of the plant-derived flavanones, acetate assimilation, acetyl-CoA carboxylase, and the biosynthesis of coenzyme A. As a result, the specific flavanone production from our optimally engineered strains was increased by over 660% for naringenin (15 to 100 mg/liter/optical density unit [OD]) and by over 420% for eriodictyol (13 to 55 mg/liter/OD).Development of efficient recombinant production platforms for natural product biosynthesis is often limited by the availability of precursors and cofactors derived from the host''s native metabolism. This limitation is generally addressed through modifications based on ad hoc predictions or random genetic perturbations, often overlooking the myriad of interactions within the global metabolic network. Advances in computational systems biology have yielded more systems-based approaches (8, 17, 37, 38), providing a means to analyze genome-wide reaction networks using limited parameters and assumptions (19, 25, 35). Using constraints developed from the network architecture to define a metabolic flux space and optimizing these by means of a prescribed metabolic objective, such as biomass, known as flux balance analysis (FBA) (39), one can explore unique aspects within the solution space (30). Gene deletion mutants are typically investigated using a quadratic objective, termed minimization of metabolic adjustment (31), although numerous other optimization routines have also been developed (5, 26, 27, 32). All routines face the same challenges in application, particularly those related to computational costs associated with the combinatorial explosion of phenotypic possibilities in large networks. FBA has largely remained at the theoretical level with few examples presenting its successful experimental verification, especially toward heterologous product biosynthesis (1, 2, 10).Previously, a novel approach termed OptGene, which integrates an evolutionary algorithm within constraint-based modeling, was utilized to identify in silico gene deletion strategies for the microbial fermentation of vanillin, glycerol, and succinate (26). Presented here is an alternative, independently derived model to similarly investigate the impact of multiple gene deletions in microorganisms by coupling an evolutionary search to constraint-based modeling, termed the cipher of evolutionary design (CiED) model. This method differs from OptGene in two significant factors. First, CiED includes a unique mutation function to retain beneficial mutations, thus expediting evolutionary convergence. Second, CiED includes an optimality assessment from an evolutionary search by means of a frequency analysis.In the past decade flavonoids have emerged as potential candidates for the treatment of various human maladies, and as such their biosynthesis in microorganisms has been extensively studied (7, 11, 16, 23, 24, 40). Formation of flavanones, the common precursors of all flavonoids, occurs through the action of 4-coumaroyl:coenzyme A (CoA) ligase (4CL), flavonoid chalcone synthase (CHS), and flavonoid chalcone isomerase (CHI), requiring 3 mol of malonyl-CoA and 1 mol of each CoA and ATP for every flavanone molecule generated. Thus, by grafting this biosynthetic pathway into the native metabolic network of Escherichia coli, a significant metabolic burden is imposed (33). During exponential growth in glucose-supplemented media, acetyl-CoA is the dominant component of the total CoA pool, with malonyl-CoA appearing only as a minor species (13, 14). Therefore, engineering the E. coli metabolic network to channel more carbon into malonyl-CoA, CoA, and ATP requires identifying and manipulating key reactions and pathways within the global network architecture.In this study, we experimentally validated genotypes predicted by CiED for the optimized biosynthesis of flavanones in E. coli. Such genotypes were identified by both flavanone production potential and a minimal growth requirement by evolving random populations of in silico strains under an artificial selection process. CiED-predicted genotypes were then constructed and coupled to overexpression of acetyl-CoA carboxylase (ACC), biotin ligase (BPL), and the flavanone biosynthetic pathway as previously performed (22). Finally, since the CiED algorithm predicted carbon flux increases through the CoA biosynthetic pathway in concert with gene deletions, sequential overexpression of native E. coli enzymes responsible for CoA biosynthesis were performed, resulting in an optimal strain with improved flavanone production levels.  相似文献   

20.
Escherichia coli SSB (EcSSB) is a model single-stranded DNA (ssDNA) binding protein critical in genome maintenance. EcSSB forms homotetramers that wrap ssDNA in multiple conformations to facilitate DNA replication and repair. Here we measure the binding and wrapping of many EcSSB proteins to a single long ssDNA substrate held at fixed tensions. We show EcSSB binds in a biphasic manner, where initial wrapping events are followed by unwrapping events as ssDNA-bound protein density passes critical saturation and high free protein concentration increases the fraction of EcSSBs in less-wrapped conformations. By destabilizing EcSSB wrapping through increased substrate tension, decreased substrate length, and protein mutation, we also directly observe an unstable bound but unwrapped state in which ∼8 nucleotides of ssDNA are bound by a single domain, which could act as a transition state through which rapid reorganization of the EcSSB–ssDNA complex occurs. When ssDNA is over-saturated, stimulated dissociation rapidly removes excess EcSSB, leaving an array of stably-wrapped complexes. These results provide a mechanism through which otherwise stably bound and wrapped EcSSB tetramers are rapidly removed from ssDNA to allow for DNA maintenance and replication functions, while still fully protecting ssDNA over a wide range of protein concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号