首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
In order to determine whether polymorphic forms of the Ca2+ + Mg2+-dependent ATPase exist, we have examined the cross-reactivity of five monoclonal antibodies prepared against the rabbit skeletal muscle sarcoplasmic reticulum enzyme with proteins from microsomal fractions isolated from a variety of muscle and nonmuscle tissues. All of the monoclonal antibodies cross-reacted in immunoblots against rat skeletal muscle Ca2+ + Mg2+-dependent ATPase but they cross-reacted differentially with the enzyme from chicken skeletal muscle. No cross-reactivity was observed with the Ca2+ + Mg2+-dependent ATPase of lobster skeletal muscle. The pattern of antibody cross-reactivity with a 100,000 dalton protein from sarcoplasmic reticulum and microsomes isolated from various muscle and nonmuscle tissues of rabbit demonstrated the presence of common epitopes in multiple polymorphic forms of the Ca2+ + Mg2+-dependent ATPase. One of the monoclonal antibodies prepared against the purified Ca2+ + Mg2+-dependent ATPase of rabbit skeletal muscle sarcoplasmic reticulum was found to cross-react with calsequestrin and with a series of other Ca2+-binding proteins and their proteolytic fragments. Its cross-reactivity was enhanced in the presence of EGTA and diminished in the presence of Ca2+. Its lack of cross-reactivity with proteins that do not bind Ca2+ suggests that it has specificity for antigenic determinants that make up the Ca2+-binding sites in several Ca2+-binding proteins including the Ca2+ + Mg2+-dependent ATPase.This paper is dedicated to the memory of Dr. David E. Green.  相似文献   

2.
Calsequestrin is the major Ca2+-binding protein localized in the terminal cisternae of the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle cells. Calsequestrin has been purified and cloned from both skeletal and cardiac muscle in mammalian, amphibian, and avian species. Two different calsequestrin gene products namely cardiac and fast have been identified. Fast and cardiac calsequestrin isoforms have a highly acidic amino acid composition. The amino acid composition of the cardiac form is very similar to the skeletal form except for the carboxyl terminal region of the protein which possess variable length of acidic residues and two phosphorylation sites. Circular dichroism and NMR studies have shown that calsequestrin increases its -helical content and the intrinsic fluorescence upon binding of Ca2+. Calsequestrin binds Ca2+ with high-capacity and with moderate affinity and it functions as a Ca2+ storage protein in the lumen of the SR. Calsequestrin has been found to be associated with the Ca2+ release channel protein complex of the SR through protein-protein interactions. The human and rabbit fast calsequestrin genes have been cloned. The fast gene is skeletal muscle specific and transcribed at different rates in fast and slow skeletal muscle but not in cardiac muscle. We have recently cloned the rabbit cardiac calsequestrin gene. Heart expresses exclusively the cardiac calsquestrin gene. This gene is also expressed in slow skeletal muscle. No change in calsequestrin mRNA expression has been detected in animal models of cardiac hypertrophy and in failing human heart.  相似文献   

3.
In this report we defined the structural and temporal limits within which calreticulin and calsequestrin participate in the muscle cell phenotype, in the L6 model myogenic system. Calreticulin and calsequestrin are two Ca2+ binding proteins thought to participate in intracellular Ca2+ homeostasis. We show that calsequestrin protein and mRNA were expressed when L6 cells were induced to differentiate, during which time the level of expression of calreticulin protein did not change appreciably. Calreticulin mRNA levels, however, were constant throughout L6 cell differentiation except for slight decline in the mRNA levels at the very late stages of L6 differentiation (day 11–12). We also show that the two Ca2+ binding proteins are coexpressed in differentiated L6 cells. Based on its mobility in SDS-PAGE, L6 rat skeletal muscle cells in culture expressed cardiac isoform of calsequestrin. In the mature rat skeletal muscle, calreticulin and calsequestrin were localized to sarcoplasmic reticulum (SR). Calreticulin, but not calsequestrin, staining was also observed in the perinuclear region. These data suggest that expression of calreticulin and calsequestrin may be under different control during myogenesis in rat L6 cells in culture. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Contractile activation in striated muscles requires a Ca2+ reservoir of large capacity inside the sarcoplasmic reticulum (SR), presumably the protein calsequestrin. The buffering power of calsequestrin in vitro has a paradoxical dependence on [Ca2+] that should be valuable for function. Here, we demonstrate that this dependence is present in living cells. Ca2+ signals elicited by membrane depolarization under voltage clamp were compared in single skeletal fibers of wild-type (WT) and double (d) Casq-null mice, which lack both calsequestrin isoforms. In nulls, Ca2+ release started normally, but the store depleted much more rapidly than in the WT. This deficit was reflected in the evolution of SR evacuability, E, which is directly proportional to SR Ca2+ permeability and inversely to its Ca2+ buffering power, B. In WT mice E starts low and increases progressively as the SR is depleted. In dCasq-nulls, E started high and decreased upon Ca2+ depletion. An elevated E in nulls is consistent with the decrease in B expected upon deletion of calsequestrin. The different value and time course of E in cells without calsequestrin indicate that the normal evolution of E reflects loss of B upon SR Ca2+ depletion. Decrement of B upon SR depletion was supported further. When SR calcium was reduced by exposure to low extracellular [Ca2+], release kinetics in the WT became similar to that in the dCasq-null. E became much higher, similar to that of null cells. These results indicate that calsequestrin not only stores Ca2+, but also varies its affinity in ways that progressively increase the ability of the store to deliver Ca2+ as it becomes depleted, a novel feedback mechanism of potentially valuable functional implications. The study revealed a surprisingly modest loss of Ca2+ storage capacity in null cells, which may reflect concurrent changes, rather than detract from the physiological importance of calsequestrin.  相似文献   

5.
Summary Calsequestrin is a calcium binding protein present in the sarcoplasmic reticulum (SR) of animal muscle cells and is thought to be essential for the rapid uptake and release of Ca2+, and thus for the regulation of Ca2+-dependent cellular functions. Higher plant cells of red beet (Beta vulgaris L.) and cucumber (Cucumis sativus L.) contain a polypeptide of about Mr 55000 that cross-reacts with a monoclonal antibody raised against calsequestrin from rabbit skeletal muscle SR. In beet this protein changes its apparent molecular weight with pH as indicated in Western immunoblotting. Although this protein bound calcium it was not the dominant calcium-binding protein in red beet. Washing of beet root tissue leads to a slight increase of this polypeptide in microsomal fractions as indicated by immunoblotting. After immunoblotting to partially purified cell membrane fractions this polypeptide appeared to be predominantly associated with endoplasmic reticulum-enriched fractions. Immunogold labelling of ultrathin sections of cucumber hypocotyl using the anti-calsequestrin antibody showed that gold particles were very largely confined to the cytosol and often in close proximity to the ER. Clusters of up to nine gold particles were observed, often over small vesicular areas, as observed in some animal tissues. These results indicate that red beet and cucumber cells contain a protein which may be related to animal calsequestrin. It appears to be associated with the ER and could be involved in cellular calcium regulation.  相似文献   

6.
Calsequestrin is the major Ca2+ binding protein in the sarcoplasmic reticulum (SR), serves as the main Ca2+ storage and buffering protein and is an important regulator of Ca2+ release channels in both skeletal and cardiac muscle. It is anchored at the junctional SR membrane through interactions with membrane proteins and undergoes reversible polymerization with increasing Ca2+ concentration. Calsequestrin provides high local Ca2+ at the junctional SR and communicates changes in luminal Ca2+ concentration to Ca2+ release channels, thus it is an essential component of excitation-contraction coupling. Recent studies reveal new insights on calsequestrin trafficking, Ca2+ binding, protein evolution, protein-protein interactions, stress responses and the molecular basis of related human muscle disease, including catecholaminergic polymorphic ventricular tachycardia (CPVT). Here we provide a comprehensive overview of calsequestrin, with recent advances in structure, diverse functions, phylogenetic analysis, and its role in muscle physiology, stress responses and human pathology.  相似文献   

7.
Normal Ca2+ signalling in skeletal muscle depends on the membrane associated proteins triadin and junctin and their ability to mediate functional interactions between the Ca2+ binding protein calsequestrin and the type 1 ryanodine receptor in the lumen of the sarcoplasmic reticulum. This important mechanism conserves intracellular Ca2+ stores, but is poorly understood. Triadin and junctin share similar structures and are lumped together in models of interactions between skeletal muscle calsequestrin and ryanodine receptors, however their individual roles have not been examined at a molecular level. We show here that purified skeletal ryanodine receptors are similarly activated by purified triadin or purified junctin added to their luminal side, although a lack of competition indicated that the proteins act at independent sites. Surprisingly, triadin and junctin differed markedly in their ability to transmit information between skeletal calsequestrin and ryanodine receptors. Purified calsequestrin inhibited junctin/triadin-associated, or junctin-associated, ryanodine receptors and the calsequestrin re-associated channel complexes were further inhibited when luminal Ca2+ fell from 1 mM to ≤100 μM, as seen with native channels (containing endogenous calsequestrin/triadin/junctin). In contrast, skeletal calsequestrin had no effect on the triadin/ryanodine receptor complex and the channel activity of this complex increased when luminal Ca2+ fell, as seen with purified channels prior to triadin/calsequestrin re-association. Therefore in this cell free system, junctin alone mediates signals between luminal Ca2+, skeletal calsequestrin and skeletal ryanodine receptors and may curtail resting Ca2+ leak from the sarcoplasmic reticulum. We suggest that triadin serves a different function which may dominate during excitation–contraction coupling.  相似文献   

8.
Calreticulin, the main Ca2+ binding protein in the endoplasmic reticulum of eukaryotic cells, was characterized in Ginkgo biloba L. pollen and seeds. Electrophoretic analysis of the partly purified extracts showed the presence of two protein bands of 57 and 50kDa apparent molecular masses, which strongly cross-reacted with antibodies against plant calreticulins. Amino acid sequence comparison with other plant and animal calreticulins revealed a much higher similarity of the N-terminus of Ginkgo calreticulins with the homologue from angiosperms rather than with that from mammals. The finding of calreticulin in Ginkgo is indicative of the conservation also in gymnosperms of Ca2+ homeostatic mechanisms, which seem to rely on the same molecular components as all eukaryotic cells.  相似文献   

9.
This review focuses on molecular interactions between calsequestrin, triadin, junctin and the ryanodine receptor in the lumen of the sarcoplasmic reticulum. These interactions modulate changes in Ca2+ release in response to changes in the Ca2+ load within the sarcoplasmic reticulum store in striated muscle and are of fundamental importance to Ca2+ homeostasis, since massive adaptive changes occur when expression of the proteins is manipulated, while mutations in calsequestrin lead to functional changes which can be fatal. We find that calsequestrin plays a different role in the heart and skeletal muscle, enhancing Ca2+ release in the heart, but depressing Ca2+ release in skeletal muscle. We also find that triadin and junctin exert independent influences on the ryanodine receptor in skeletal muscle where triadin alone modifies excitation–contraction coupling, while junctin alone supports functional interactions between calsequestrin and the ryanodine receptor.  相似文献   

10.
11.
Sarcoplasmic reticulum (SR) Ca2+ release in striated muscle is mediated by a multiprotein complex that includes the ryanodine receptor (RyR) Ca2+ channel and the intra-SR Ca2+ buffering protein calsequestrin (CSQ). Besides its buffering role, CSQ is thought to regulate RyR channel function. Here, CSQ-dependent luminal Ca2+ regulation of skeletal (RyR1) and cardiac (RyR2) channels is explored. Skeletal (CSQ1) or cardiac (CSQ2) calsequestrin were systematically added to the luminal side of single RyR1 or RyR2 channels. The luminal Ca2+ dependence of open probability (Po) over the physiologically relevant range (0.05-1 mM Ca2+) was defined for each of the four RyR/CSQ isoform pairings. We found that the luminal Ca2+ sensitivity of single RyR2 channels was substantial when either CSQ isoform was present. In contrast, no significant luminal Ca2+ sensitivity of single RyR1 channels was detected in the presence of either CSQ isoform. We conclude that CSQ-dependent luminal Ca2+ regulation of single RyR2 channels lacks CSQ isoform specificity, and that CSQ-dependent luminal Ca2+ regulation in skeletal muscle likely plays a relatively minor (if any) role in regulating the RyR1 channel activity, indicating that the chief role of CSQ1 in this tissue is as an intra-SR Ca2+ buffer.  相似文献   

12.

Background

Legumes establish with rhizobial bacteria a nitrogen-fixing symbiosis which is of the utmost importance for both plant nutrition and a sustainable agriculture. Calcium is known to act as a key intracellular messenger in the perception of symbiotic signals by both the host plant and the microbial partner. Regulation of intracellular free Ca2+ concentration, which is a fundamental prerequisite for any Ca2+-based signalling system, is accomplished by complex mechanisms including Ca2+ binding proteins acting as Ca2+ buffers. In this work we investigated the occurrence of Ca2+ binding proteins in Mesorhizobium loti, the specific symbiotic partner of the model legume Lotus japonicus.

Results

A soluble, low molecular weight protein was found to share several biochemical features with the eukaryotic Ca2+-binding proteins calsequestrin and calreticulin, such as Stains-all blue staining on SDS-PAGE, an acidic isoelectric point and a Ca2+-dependent shift of electrophoretic mobility. The protein was purified to homogeneity by an ammonium sulfate precipitation procedure followed by anion-exchange chromatography on DEAE-Cellulose and electroendosmotic preparative electrophoresis. The Ca2+ binding ability of the M. loti protein was demonstrated by 45Ca2+-overlay assays. ESI-Q-TOF MS/MS analyses of the peptides generated after digestion with either trypsin or endoproteinase AspN identified the rhizobial protein as ferredoxin II and confirmed the presence of Ca2+ adducts.

Conclusions

The present data indicate that ferredoxin II is a major Ca2+ binding protein in M. loti that may participate in Ca2+ homeostasis and suggest an evolutionarily ancient origin for protein-based Ca2+ regulatory systems.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0352-5) contains supplementary material, which is available to authorized users.  相似文献   

13.
Escherichia coli mutants, (verA, dilA) specifically resistant to the Ca2+ channel inhibitors verapamil and diltiazem, respectively, are hypersensitive to EGTA and BAPTA. We have shown, using 1-D and 2-D gel electrophoresis, that the synthesis of at least 25 polypeptides in the mutants was enhanced by treatment with Ca2+ chelators and the synthesis of at least 11 polypeptides was repressed. This pattern of induction was not observed in heat- or SDS-treated cells and therefore does not appear to be a general stress response. The majority of the induced proteins are low molecular weight, extremely heat stable and acidic, characteristic properties of calmodulin. Moreover, of the major induced species, three with apparent molecular masses of 12, 18, and 34kDa all cross-reacted with polyclonal and monoclonal antibodies to eukaryote calmodulins or calerythrin, a heat-resistant Ca2+-binding protein from Saccharo-polyspora erythraea. The verA, dilA mutants. In being hypersensitive to EGTA and to the Ca2+ ionophore A23187 + Ca2+, may be defective in the regulation of the level of free intracellular Ca2+.  相似文献   

14.
The sarcoplasmic/endoplasmic reticulum Ca2+ATPases (SERCAs) are the main Ca2+ pumps which decrease the intracellular Ca2+ level by reaccumulating Ca2+ into the sarcoplasmic reticulum. The neonatal SERCA1b is the major Ca2+ pump in myotubes and young muscle fibers. To understand its role during skeletal muscle differentiation its synthesis has been interfered with specific shRNA sequence. Stably transfected clones showing significantly decreased SERCA1b expression (cloneC1) were selected for experiments. The expression of the regulatory proteins of skeletal muscle differentiation was examined either by Western-blot at the protein level for MyoD, STIM1, calsequestrin (CSQ), and calcineurin (CaN) or by RT-PCR for myostatin and MCIP1.4. Quantitative analysis revealed significant alterations in CSQ, STIM1, and CaN expression in cloneC1 as compared to control cells. To examine the functional consequences of the decreased expression of SERCA1b, repeated Ca2+-transients were evoked by applications of 120 mM KCl. The significantly higher [Ca2+]i measured at the 20th and 40th seconds after the beginning of KCl application (112±3 and 110±3 nM vs. 150±7 and 135±5 nM, in control and in cloneC1 cells, respectively) indicated a decreased Ca2+-uptake capability which was quantified by extracting the maximal pump rate (454±41 μM/s vs. 144±24 μM/s, in control and in cloneC1 cells). Furthermore, the rate of calcium release from the SR (610±60 vs. 377±64 μM/s) and the amount of calcium released (843±75 μM vs. 576±80 μM) were also significantly suppressed. These changes were also accompanied by a reduced activity of CaN in cells with decreased SERCA1b. In parallel, cloneC1 cells showed inhibited cell proliferation and decreased myotube nuclear numbers. Moreover, while cyclosporineA treatment suppressed the proliferation of parental cultures it had no effect on cloneC1 cells. SERCA1b is thus considered to play an essential role in the regulation of [Ca2+]i and its ab ovo gene silencing results in decreased skeletal muscle differentiation.  相似文献   

15.
The usefulness of chemical cross-linking and 125I-labeling techniques in the analysis of protein-protein interactions and membrane polarity was evaluated on sarcoplasmic reticulum membranes. Treatment of fragmented sarcoplasmic reticulum vesicles with glutaraldehyde, dimethylsuberimidate, or copper-phenanthroline leads to the formation of high molecular weight aggregates of the Ca2+ transport ATPase; intermediate polymers of functionally and structurally interesting sizes accumulated only occasionally and in amounts of questionable significance. Coupling of membrane proteins with tolylene 2,4-diisocyanate-albumin inhibited tht ATPase activity and caused the appearance of high molecular weight aggregates and a band of about 160 000 dalton which corresponds to the ATPase-albumin complex.Even after the 100 000 dalton band of the Ca2+-transport ATPase was severely diminished by cross-linking with copper-phenanthroline or toluene diisocyanate-albumin, the Ca2+ binding proteins of sarcoplasmic reticulum remained unreacted. A consistent finding was the presence of dimers of the Ca2+ transport ATPase in aged preparations of sarcoplasmic reticulum which were converted upon reduction with β-mercaptoethanol into 100 000 dalton units.Microsomes were labeled with 125I in the presence of lactoperoxidase, glucose oxidase, and glucose and the radioactivity oft he various protein components was measured after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The specific activity of calsequestrin was many times greater than that of the Ca+ transport ATPase suggesting that it is exposed on the outside surface may be sterically hindered from access by bulky reagents (tolylene diisocyanate-albumin, ferritin-labeled anti-calsequestrin antibodies, proteolytic enzymes, etc.), as calsequestin becomes highly reactive with these agents only after its release from the membrane.  相似文献   

16.
The sarcoplasmic reticulum (SR) regulates the levels of cytoplasmic free Ca2+ ions in muscle cells. Calsequestrin is a major Ca2+ -storing protein and is localized at special sites in the SR. To investigate the development of calsequestrin-positive SR and its interaction with the cytoskeleton, we examined the distribution of calsequestrin in cultured cardiomyocytes from newborn rats by immunofluorescence with anticalsequestrin and antitubulin antibodies and rhodamine-phalloidin. In frozen sections of neonatal rat heart, anticalsequestrin immunostaining was apparent as cross-striations at Z-lines. When newborn cardiomyocytes were isolated, calsequestrin-positive SR was disorganized and was apparent as small vesicles beneath the sarcolemma, whereas myofibrils accumulated in the center of the cells. As the cells spread in culture, calsequestrin-positive vesicles spread to the periphery of the cytoplasm, becoming associated with the developing myofibrils. In mature cells, calsequestrin was closely associated with myofibrils, showing cross-striations at the Z-lines. Double-labeling using anticalsequestrin and antitubulin antibodies demonstrated that the distribution of calsequestrin-positive structures was similar to that of the microtubular arrays. When the microtubules were depolymerized by nocodazole at an early stage, the extension of the SR to the cell periphery was inhibited. In mature cardiomyocytes, nocodazole appeared not to affect the distribution of the SR. These results indicate that the calsequestrin-positive SR in cardiomyocytes is organized at the proper sites of myofibrils during myofibrillogenesis and that the microtubules might serve as tracts for the transport of components of the SR. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Plant cells contain calsequestrin   总被引:5,自引:0,他引:5  
Calsequestrin is a high capacity low affinity Ca2+-binding protein thought to be essential for the function of the intracellular rapid releasable Ca2+ pool of a variety of animal cells. Here we show that two types of plant tissues, cultured Streptanthus tortuosus cells and spinach leaves, contain a form of calsequestrin. In subcellular fractions of S. tortuosus cells, Stains-all staining reveals a metachromatically blue-staining 56,000-Da protein enriched in the microsomal fraction. This protein shares several biochemical characteristics with animal calsequestrin: 1) it changes its apparent molecular weight with the pH; 2) it is able to bind 45Ca2+ on nitrocellulose transfers; and 3) it is recognized by antibodies against canine cardiac calsequestrin. Calsequestrin was also identified in spinach leaves using a direct extraction procedure that was developed for muscle calsequestrin. Thus, our results demonstrate that plant cells contain calsequestrin within a subcellular membrane fraction. These results also suggest that calsequestrin is an ubiquitous protein rather than being limited only to animal cells.  相似文献   

18.
Twelve monoclonal antibodies directed to the cell-wall-associated proteinase of Lactococcus lactis subsp. cremoris Wg2 were isolated after immunization of BALB/c mice with a partially purified preparation of the proteinase. The monoclonal antibodies reacted with the 126-kilodalton proteinase band in a Western immunoblot. All but one of the monoclonal antibodies reacted with protein bands with a molecular weight below 126,000, possibly degradation products of the proteinase. The monoclonal antibodies could be divided into six groups according to their different reactions with the proteinase degradation products in the Western blot. Different groups of monoclonal antibodies reacted with different components of the L. lactis subsp. cremoris Wg2 proteinase. Crossed immunoelectrophoresis showed that monoclonal antibody groups I, II, and III react with proteinase component A and that groups IV, V, and VI react with proteinase component B. The isolated monoclonal antibodies cross-reacted with the proteinases of other L. lactis subspecies. Monoclonal antibodies of group IV cross-reacted with proteinase component C of other L. lactis subsp. cremoris strains. The molecular weight of the proteinase attached to the cells of L. lactis subsp. cremoris Wg2 was 200,000, which is different from the previously reported values. This could be analyzed by immunodetection of the proteinase on a Western blot. This value corresponds to the molecular weight calculated from the amino acid sequence of the cloned L. lactis subsp. cremoris Wg2 proteinase gene.  相似文献   

19.
Calsequestrin 1 is the principal Ca2+ storage protein of the sarcoplasmic reticulum of skeletal muscle. Its inheritable D244G mutation causes a myopathy with vacuolar aggregates, whereas its M87T “variant” is weakly associated with malignant hyperthermia. We characterized the consequences of these mutations with studies of the human proteins in vitro. Equilibrium dialysis and turbidity measurements showed that D244G and, to a lesser extent, M87T partially lose Ca2+ binding exhibited by wild type calsequestrin 1 at high Ca2+ concentrations. D244G aggregates abruptly and abnormally, a property that fully explains the protein inclusions that characterize its phenotype. D244G crystallized in low Ca2+ concentrations lacks two Ca2+ ions normally present in wild type that weakens the hydrophobic core of Domain II. D244G crystallized in high Ca2+ concentrations regains its missing ions and Domain II order but shows a novel dimeric interaction. The M87T mutation causes a major shift of the α-helix bearing the mutated residue, significantly weakening the back-to-back interface essential for tetramerization. D244G exhibited the more severe structural and biophysical property changes, which matches the different pathophysiological impacts of these mutations.  相似文献   

20.
Two Ca2+ sequestering proteins were studied in fast-twitch (EDL) and slow-twitch (soleus) muscle sarcoplasmic reticulum (SR) as a function of denervation time. Ca2+-ATPase activity measured in SR fractions of normal soleus represented 5% of that measure in SR fractions of normal EDL. Denervation caused a severe decrease in activity only in fast-twich muscle. Ca2+-ATPase and calsequestrin contents were affected differently by denervation. In EDL SR, Ca2+-ATPase content decreased progressively, whereas in soleus SR, no variation was observed. Calsequestrin showed a slight increase in both muscles as a function of denervation time correlated with increased45Ca-binding.These results indicate first that Ca2+-ATPase activity in EDL was under neural control, and that because of low Ca2+-ATPase activity and content in slow-twitch muscle no variation could be detected, and secondly that greater calsequestrin content might represent a relative increasing of heavy vesicles or decreasing of light vesicles as a function of denervation time in the whole SR fraction isolated in both types of muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号