首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The small heat shock proteins (sHsps) from human (Hsp27) and mouse (Hsp25) form large oligomers which can act as molecular chaperones in vitro and protect cells from heat shock and oxidative stress when overexpressed. In addition, mammalian sHsps are rapidly phosphorylated by MAPKAP kinase 2/3 at two or three serine residues in response to various extracellular stresses. Here we analyze the effect of sHsp phosphorylation on its quaternary structure, chaperone function, and protection against oxidative stress. We show that in vitro phosphorylation of recombinant sHsp as well as molecular mimicry of Hsp27 phosphorylation lead to a significant decrease of the oligomeric size. We demonstrate that both phosphorylated sHsps and the triple mutant Hsp27-S15D,S78D,S82D show significantly decreased abilities to act as molecular chaperones suppressing thermal denaturation and facilitating refolding of citrate synthase in vitro. In parallel, Hsp27 and its mutants were analyzed for their ability to confer resistance against oxidative stress when overexpressed in L929 and 13.S.1.24 cells. While wild type Hsp27 confers resistance, the triple mutant S15D,S78D,S82D cannot protect against oxidative stress effectively. These data indicate that large oligomers of sHsps are necessary for chaperone action and resistance against oxidative stress whereas phosphorylation down-regulates these activities by dissociation of sHsp complexes to tetramers.  相似文献   

2.
Small heat shock proteins are a ubiquitous and diverse family of stress proteins that have in common an alpha-crystallin domain. Mycobacterium tuberculosis has two small heat shock proteins, Acr1 (alpha-crystallin-related protein 1, or Hsp16.3/16-kDa antigen) and Acr2 (HrpA), both of which are highly expressed under different stress conditions. Small heat shock proteins form large oligomeric assemblies and are commonly polydisperse. Nanoelectrospray mass spectrometry showed that Acr2 formed a range of oligomers composed of dimers and tetramers, whereas Acr1 was a dodecamer. Electron microscopy of Acr2 showed a variety of particle sizes. Using three-dimensional analysis of negative stain electron microscope images, we have shown that Acr1 forms a tetrahedral assembly with 12 polypeptide chains. The atomic structure of a related alpha-crystallin domain dimer was docked into the density to build a molecular structure of the dodecameric Acr1 complex. Along with the differential regulation of these two proteins, the differences in their quaternary structures demonstrated here supports their distinct functional roles.  相似文献   

3.
Some properties of human small heat shock protein Hsp22 (H11 or HspB8)   总被引:7,自引:0,他引:7  
Untagged recombinant human small heat shock protein with apparent molecular mass 22 kDa (Hsp22) was obtained in homogeneous state. Size exclusion chromatography and chemical crosslinking with dimethylsuberimidate indicate that Hsp22 forms stable dimers. Being highly susceptible to oxidation Hsp22 forms disulfide crosslinked dimers and poorly soluble high molecular mass oligomers. According to CD spectroscopy oxidation of Hsp22 results in disturbing of both secondary and tertiary structure. Hsp22 possesses a negligibly low autophosphorylation activity and under the conditions used is unable to phosphorylate casein or histone. Hsp22 effectively prevents heat-induced aggregation of yeast alcohol dehydrogenase and bovine liver rhodanese with chaperone activity comparable to that of recombinant human small heat shock protein with apparent molecular mass 20 kDa (Hsp20).  相似文献   

4.
The primary structure of chicken small heat shock protein (sHsp) with apparent molecular weight 25 kDa was refined and it was shown that this protein has conservative primary structure 74RALSRQLSSG(83) at Ser77 and Ser81, which are potential sites of phosphorylation. Recombinant wild-type chicken Hsp25, its three mutants, 1D (S15D), 2D (S77D+S81D) and 3D (S15D+S77D+S81D), as well as delR mutant with the primary structure 74RALS-ELSSG(82) at potential sites of phosphorylation were expressed and purified. It has been shown that the avian tissues contain three forms of Hsp25 having pI values similar to that of the wild-type protein, 1D and 2D mutants that presumably correspond to nonphosphorylated, mono- and di-phosphorylated forms of Hsp25. Recombinant wild-type protein, its 1D mutant and Hsp25, isolated from chicken gizzard, form stable high molecular weight oligomeric complexes. The delR, 2D and 3D mutants tend to dissociate and exist in the form of a mixture of high and low molecular weight oligomers. Point mutations mimicking phoshorylation decrease chaperone activity of Hsp25 measured by reduction of dithiothreitol induced aggregation of alpha-lactalbumin, but increase the chaperone activity of Hsp25 measured by heat induced aggregation of alcohol dehydrogenase. It is concluded that avian Hsp25 has a more stable quaternary structure than its mammalian counterparts and mutations mimicking phosphorylation differently affect chaperone activity of avian Hsp25, depending on the nature of target protein and the way of denaturing.  相似文献   

5.
Hsp16.3, a small heat shock protein from Mycobacterium tuberculosis (MTB), was originally identified as an immuno-dominant antigen and later found to be a major membrane protein. In vitro studies show that Hsp16.3 exists as nonamers and undergoes dynamic dissociation/re-association equilibrium in solutions. Nevertheless, neither the details nor the physiological implications of the presence of Hsp16.3 in the plasma membrane have been studied. In this study, we demonstrated that the purified Hsp16.3 proteins were able to interact with the MTB plasma membrane in a specific and reversible manner, suggesting that there might be subunit exchange between membrane-bound Hsp16.3 and soluble Hsp16.3 oligomers. The dissociation of Hsp16.3 oligomers appears to be a prerequisite for its membrane binding, which is interesting in view that the dissociation of small heat shock protein oligomers was also found to be necessary for it to bind denaturing substrate proteins. Furthermore, the oligomeric structure of Hsp16.3 seems to be more dynamic and flexible when incubating with the mycobacterium lipids. The physiological implications of these observations for Hsp16.3, and small heat shock proteins in general, are discussed.  相似文献   

6.
Human Hsp27 oligomerizes in vivo in a phosphorylation-dependent manner that regulates the functional activity of the protein. We have studied the self-association of wild-type Hsp27 by both sedimentation velocity and sedimentation equilibrium analysis and established that the protein forms an equilibrium mixture of monomers/dimers, tetramers, 12-mers and 16-mers (20 mM Tris-HCl (pH 8.4), 100 mM NaCl, 20 degrees C). Corresponding analysis of the S15D/S78D/S82D triple variant, which is believed to mimic the behavior of phosphorylated Hsp27, establishes that this form of the protein forms primarily monomers and dimers but also forms a small fraction of very large oligomers. Variants in which critical N-terminal sequences have been deleted exhibit oligomerization behavior that is intermediate between that of the triple variant and the wild-type protein. On the other hand a C-terminal sequence deletion variant forms larger oligomers than does the wild-type protein, but also exhibits a greater fraction of smaller oligomers. Notably, the presence of an N-terminal His6-tag induces formation of much larger oligomers than observed for any other form of the protein. The results of this work establish that the wild-type protein forms smaller oligomers than previously believed, define the roles played by various structural domains in Hsp27 oligomerization, and provide improved molecular probes with better-defined properties for the design of future experiments.  相似文献   

7.
Small heat shock proteins (sHsps) are molecular chaperones that efficiently bind non-native proteins. All members of this family investigated so far are oligomeric complexes. For Hsp26, an sHsp from the cytosol of Saccharomyces cerevisiae, it has been shown that at elevated temperatures the 24-subunit complex dissociates into dimers. This dissociation seems to be required for the efficient interaction with unfolding proteins that results in the formation of large, regular complexes comprising Hsp26 and the non-native proteins. To gain insight into the molecular mechanism of this chaperone, we analyzed the dynamics and stability of the two oligomeric forms of Hsp 26 (i.e. the 24-mer and the dimer) in comparison to a construct lacking the N-terminal domain (Hsp26DeltaN). Furthermore, we determined the stabilities of complexes between Hsp26 and non-native proteins. We show that the temperature-induced dissociation of Hsp26 into dimers is a completely reversible process that involves only a small change in energy. The unfolding of the dissociated Hsp26 dimer or Hsp26DeltaN, which is a dimer, requires a much higher energy. Because Hsp26DeltaN was inactive as a chaperone, these results imply that the N-terminal domain is of critical importance for both the association of Hsp26 with non-native proteins and the formation of large oligomeric complexes. Interestingly, complexes of Hsp26 with non-native proteins are significantly stabilized against dissociation compared with Hsp26 complexes. Taken together, our findings suggest that the quaternary structure of Hsp26 is determined by two elements, (i) weak, regulatory interactions required to form the shell of 24 subunits and (ii) a strong and stable dimerization of the C-terminal domain.  相似文献   

8.
Hsp26: a temperature-regulated chaperone   总被引:27,自引:0,他引:27       下载免费PDF全文
Small heat shock proteins (sHsps) are a conserved protein family, with members found in all organisms analysed so far. Several sHsps have been shown to exhibit chaperone activity and protect proteins from irreversible aggregation in vitro. Here we show that Hsp26, an sHsp from Saccharomyces cerevisiae, is a temperature-regulated molecular chaperone. Like other sHsps, Hsp26 forms large oligomeric complexes. At heat shock temperatures, however, the 24mer chaperone complex dissociates. Interestingly, chaperone assays performed at different temperatures show that the dissociation of the Hsp26 complex at heat shock temperatures is a prerequisite for efficient chaperone activity. Binding of non-native proteins to dissociated Hsp26 produces large globular assemblies with a structure that appears to be completely reorganized relative to the original Hsp26 oligomers. In this complex one monomer of substrate is bound per Hsp26 dimer. The temperature-dependent dissociation of the large storage form of Hsp26 into a smaller, active species and the subsequent re-association to a defined large chaperone-substrate complex represents a novel mechanism for the functional activation of a molecular chaperone.  相似文献   

9.
The multimeric membrane protein complex translocase mediates the transport of preproteins across and integration of membrane proteins into the inner membrane of Escherichia coli. The translocase consists of the peripheral membrane-associated ATPase SecA and the heterotrimeric channel-forming complex consisting of SecY, SecE and SecG. We have investigated the quaternary structure of the SecYEG complex in proteoliposomes. Fluorescence resonance energy transfer demonstrates that SecYEG forms oligomers when embedded in the membrane. Freeze-fracture techniques were used to examine the oligomeric composition under non-translocating and translocating conditions. Our data show that membrane-embedded SecYEG exists in a concentration-dependent equilibrium between monomers, dimers and tetramers, and that dynamic exchange of subunits between oligomers can occur. Remarkably, the formation of dimers and tetramers in the lipid environment is stimulated significantly by membrane insertion of SecA and by the interaction with translocation ligands SecA, preprotein and ATP, suggesting that the active translocation channel consists of multiple SecYEG complexes.  相似文献   

10.
The protein quality control (PQC) system maintains protein homeostasis by counteracting the accumulation of misfolded protein conformers. Substrate degradation and refolding activities executed by ATP-dependent proteases and chaperones constitute major strategies of the proteostasis network. Small heat shock proteins represent ATP-independent chaperones that bind to misfolded proteins, preventing their uncontrolled aggregation. sHsps share the conserved α-crystallin domain (ACD) and gain functional specificity through variable and largely disordered N- and C-terminal extensions (NTE, CTE). They form large, polydisperse oligomers through multiple, weak interactions between NTE/CTEs and ACD dimers. Sequence variations of sHsps and the large variability of sHsp oligomers enable sHsps to fulfill diverse tasks in the PQC network. sHsp oligomers represent inactive yet dynamic resting states that are rapidly deoligomerized and activated upon stress conditions, releasing substrate binding sites in NTEs and ACDs Bound substrates are usually isolated in large sHsp/substrate complexes. This sequestration activity of sHsps represents a third strategy of the proteostasis network. Substrate sequestration reduces the burden for other PQC components during immediate and persistent stress conditions. Sequestered substrates can be released and directed towards refolding pathways by ATP-dependent Hsp70/Hsp100 chaperones or sorted for degradation by autophagic pathways. sHsps can also maintain the dynamic state of phase-separated stress granules (SGs), which store mRNA and translation factors, by reducing the accumulation of misfolded proteins inside SGs and preventing unfolding of SG components. This ensures SG disassembly and regain of translational capacity during recovery periods.  相似文献   

11.
alphaA-Crystallin, a member of the small heat shock protein (sHsp) family, is a large multimeric protein composed of 30-40 identical subunits. Its quaternary structure is highly dynamic, with subunits capable of freely and rapidly exchanging between oligomers. We report here the development of a fluorescence resonance energy transfer method for measuring structural compatibility between alphaA-crystallin and other proteins. We found that Hsp27 and alphaB-crystallin readily exchanged with fluorescence-labeled alphaA-crystallin, but not with other proteins structurally unrelated to sHsps. Truncation of 19 residues from the N terminus or 10 residues from the C terminus of alphaA-crystallin did not significantly change its subunit organization or exchange rate constant. In contrast, removal of the first 56 or more residues converts alphaA-crystallin into a predominantly small multimeric form consisting of three or four subunits, with a concomitant loss of exchange activity. These findings suggest residues 20-56 are essential for the formation of large oligomers and the exchange of subunits. Similar results were obtained with truncated Hsp27 lacking the first 87 residues. We further showed that the exchange rate is independent of alphaA-crystallin concentration, suggesting subunit dissociation may be the rate-limiting step in the exchange reaction. Our findings reveal a quarternary structure of alphaA-crystallin, consisting of small multimers of alphaA-crystallin subunits in a dynamic equilibrium with the oligomeric complex.  相似文献   

12.
The ability of the small Hsp (heat-shock protein) Lo18 from Oenococcus oeni to modulate the membrane fluidity of liposomes or to reduce the thermal aggregation of proteins was studied as a function of the pH in the range 5-9. We have determined by size-exclusion chromatography and analytical ultracentrifugation that Lo18 assembles essentially as a 16-mer at acidic pH. Its quaternary structure evolves to a mixture of lower molecular mass oligomers probably in dynamic equilibrium when the pH increases. The best Lo18 activities are observed at pH 7 when the particle distribution contains a major proportion of dodecamers. At basic pH, particles corresponding to a dimer prevail and are thought to be the building blocks leading to oligomerization of Lo18. At acidic pH, the dimers are organized in a double-ring of stacked octamers to form the 16-mer as shown by the low-resolution structure determined by electron microscopy. Experiments performed with a modified protein (A123S) shown to preferentially form dimers confirm these results. The α-crystallin domain of Methanococcus jannaschii Hsp16.5, taken as a model of the Lo18 counterpart, fits with the electron microscopy envelope of Lo18.  相似文献   

13.
Small heat shock proteins (sHsps) are molecular chaperones that specifically bind non-native proteins and prevent them from irreversible aggregation. A key trait of sHsps is their existence as dynamic oligomers. Hsp26 from Saccharomyces cerevisiae assembles into a 24mer, which becomes activated under heat shock conditions and forms large, stable substrate complexes. This activation coincides with the destabilization of the oligomer and the appearance of dimers. This and results from other groups led to the generally accepted notion that dissociation might be a requirement for the chaperone mechanism of sHsps. To understand the chaperone mechanism of sHsps it is crucial to analyze the relationship between chaperone activity and stability of the oligomer. We generated an Hsp26 variant, in which a serine residue of the N-terminal domain was replaced by cysteine. This allowed us to covalently crosslink neighboring subunits by disulfide bonds. We show that under reducing conditions the structure and function of this variant are indistinguishable from that of the wild-type protein. However, when the cysteine residues are oxidized, the dissociation into dimers at higher temperatures is no longer observed, yet the chaperone activity remains unaffected. Furthermore, we show that the exchange of subunits between Hsp26 oligomers is significantly slower than substrate aggregation and even inhibited in the presence of disulfide bonds. This demonstrates that the rearrangements necessary for shifting Hsp26 from a low to a high affinity state for binding non-native proteins occur without dissolving the oligomer.  相似文献   

14.
Human small heat shock protein 27 (Hsp27) undergoes concentration-dependent equilibrium dissociation from an ensemble of large oligomers to a dimer. This phenomenon plays a critical role in Hsp27 chaperone activity in vitro enabling high affinity binding to destabilized proteins. In vivo dissociation, which is regulated by phosphorylation, controls Hsp27 role in signaling pathways. In this study, we explore the sequence determinants of Hsp27 dissociation and define the structural basis underlying the increased affinity of Hsp27 dimers to client proteins. A systematic cysteine mutagenesis is carried out to identify residues in the N-terminal domain important for the equilibrium between Hsp27 oligomers and dimers. In addition, spin-labels were attached to the cysteine mutants to enable electron paramagnetic resonance (EPR) analysis of residue environment and solvent accessibility in the context of the large oligomers, upon dissociation to the dimer, and following complex formation with the model substrate T4 Lysozyme (T4L). The mutagenic analysis identifies residues that modulate the equilibrium dissociation in favor of the dimer. EPR analysis reveals that oligomer dissociation disrupts subunit contacts leading to the exposure of Hsp27 N-terminal domain to the aqueous solvent. Moreover, regions of this domain are highly dynamic with no evidence of a packed core. Interaction between T4L and sequences in this domain is inferred from transition of spin-labels to a buried environment in the substrate/Hsp27 complex. Together, the data provide the first structural analysis of sHSP dissociation and support a model of chaperone activity wherein unstructured and highly flexible regions in the N-terminal domain are critical for substrate binding.  相似文献   

15.
The ubiquitous small heat shock proteins (sHsps) are efficient molecular chaperones that interact with nonnative proteins, prevent their aggregation, and support subsequent refolding. No obvious substrate specificity has been detected so far. A striking feature of sHsps is that they form large complexes with nonnative proteins. Here, we used several well established model chaperone substrates, including citrate synthase, alpha-glucosidase, rhodanese, and insulin, and analyzed their interaction with murine Hsp25 and yeast Hsp26 upon thermal unfolding. The two sHsps differ in their modes of activation. In contrast to Hsp25, Hsp26 undergoes a temperature-dependent dissociation that is required for efficient substrate binding. Our analysis shows that Hsp25 and Hsp26 reacted in a similar manner with the nonnative proteins. For all substrates investigated, complexes of defined size and shape were formed. Interestingly, several different nonnative proteins could be incorporated into defined sHsp-substrate complexes. The first substrate protein bound seems to determine the complex morphology. Thus, despite the differences in quaternary structure and mode of activation, the formation of large uniform sHsp-substrate complexes seems to be a general feature of sHsps, and this unique chaperone mechanism is conserved from yeast to mammals.  相似文献   

16.
Unfolding proteins are prevented from irreversible aggregation by small heat shock proteins (sHsps) through interactions that depend on a dynamic equilibrium between sHsp subunits and sHsp oligomers. A chloroplast-localized sHsp, Hsp21, provides protection to client proteins to increase plant stress resistance. Structural information is lacking concerning the oligomeric conformation of this sHsp. We here present a structure model of Arabidopsis thaliana Hsp21, obtained by homology modeling, single-particle electron microscopy, and lysine-specific chemical crosslinking. The model shows that the Hsp21 subunits are arranged in two hexameric discs, similar to a cytosolic plant sHsp homolog that has been structurally determined after crystallization. However, the two hexameric discs of Hsp21 are rotated by 25° in relation to each other, suggesting a role for global dynamics in dodecamer function.  相似文献   

17.
HspB8/Hsp22 is a functionally distinct small heat shock proteins (sHsp) and is preferentially expressed in brain, heart, skeletal, and smooth muscle. HspB8 is also associated with neuromuscular function and protein quality control by proteasomes in cardiac hypertrophy. However, the molecular properties in vitro and molecular oligomerization remain uncertain. In this investigation, the rat HspB8 gene was expressed in E.coli cells, and mature HspB8 protein was efficiently prepared. The chaperone-like activity of HspB8 in vitro was quantitatively analyzed by model substrates. Size exclusion chromatography revealed that HspB8 had polydisperse oligomers and underwent dynamic molecular transition in solution, existing in a dynamic equilibrium between various oligomers. In a nonphysiological solution, HspB8 was predominantly octamers. In a physiological solution (pH 7.4), HspB8 mainly formed tetramers. The dynamic interactive transition maybe was helpful to maintain its molecular complxes in solution. In a FRET assay, subunit exchange occurred frequently between the various oligomers with a rate of 0.12, 0.089, and 0.064 min(-1) at 50°C, 43°C, and 37°C, respectively. It also demonstrated the dynamic molecular properties of HspB8 in solution.  相似文献   

18.
Small heat shock proteins (sHsps) exist in dynamic oligomeric complexes and display diverse biological functions ranging from chaperone properties to modulator of apoptosis. So far, the role of stress-dependent phosphorylation of mammalian sHsps for its structure and function has been analyzed by using various phosphorylation site mutants overexpressed in different cell types as well as by non-exclusive inhibitors of the p38 MAPK cascade. Here we investigate the role of phosphorylation of endogenous sHsp in a genetic model lacking the major Hsp25 kinase, the MAP kinase-activated protein kinase MK2. We demonstrate that in MK2-deficient fibroblasts, where no stress-dependent phosphorylation of Hsp25 at Ser86 and no in vitro binding to 14-3-3 was detectable, stress-dependent disaggregation of endogenous Hsp25 complexes is impared and kinetics of arsenite-dependent, H2O2-dependent, and sublethal heat shock-induced insolubilization of Hsp25 is delayed. Similarly, green fluorescent protein-tagged Hsp25 shows retarded subcellular accumulation into stress granules in MK2-deficient cells after arsenite treatment. Decreased insolubilization of Hsp25 in MK2-deficient cells correlates with increased resistance against arsenite, H2O2, and sublethal heat shock treatment and with decreased apoptosis. In contrast, after severe, lethal heat shock MK2-deficient embryonic fibroblasts cells show fast and complete insolubilization of Hsp25 independent of MK2 and no increased stress resistance. Hence, MK2-dependent formation of insoluble stress granules and irreversible cell damage by oxidative stresses and sublethal heat shock correlate and only upon severe, lethal heat shock MK2-independent processes could determine insolubilization of Hsp25 and are more relevant for cellular stress damage.  相似文献   

19.
Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that prevent the unspecific aggregation of proteins. So far, Hsp26 was the only unambiguously identified member of the sHsp family in Saccharomyces cerevisiae. We show here that the sHsp system in the cytosol of S. cerevisiae consists of two proteins, Hsp26 and Hsp42. Hsp42 forms large dynamic oligomers with a barrel-like structure. In contrast to Hsp26, which functions predominantly at heat shock temperatures, Hsp42 is active as a chaperone under all conditions tested in vivo and in vitro. Under heat shock conditions, both Hsp42 and Hsp26 suppress the aggregation of one-third of the cytosolic proteins. This subset is about 90% overlapping for Hsp42 and Hsp26. The sHsp substrates belong to different biochemical pathways. This indicates a general protective function of sHsps for proteome stability in S. cerevisiae. Consistent with this observation, sHsp knockout strains show phenotypical defects. Taken together, our results define Hsp42 as an important player for protein homeostasis at physiological and under stress conditions.  相似文献   

20.
We applied different methods to analyze the effects of the recombinant wild-type small heat shock protein with an apparent molecular mass of 27 kD (Hsp27-wt) and its S15,78,82D mutant (Hsp27-3D), which mimics the naturally occurring phosphorylation of this protein, on the thermal denaturation and aggregation of F-actin. It has been shown that, at the weight ratio of Hsp27/actin equal to 1/4, both Hsp27-wt and Hsp27-3D do not affect the thermal unfolding of F-actin but effectively prevent the aggregation of F-actin by forming soluble complexes with denatured actin. The formation of these complexes occurs upon heating and accompanies the F-actin thermal denaturation. It is known that Hsp27-wt forms high-molecular-mass oligomers, whereas Hsp27-3D forms small dimers or tetramers. However, the complexes formed by Hsp27-wt and Hsp27-3D with denatured actin did not differ in their size, as measured by dynamic light scattering, and demonstrated the same hydrodynamic radius of 17-18 nm. On the other hand, the sedimentation coefficients of these complexes were distributed within the range 10-45 S in the case of Hsp27-3D and 18-60 S in the case of Hsp27-wt. Thus, the ability of Hsp27 to form soluble complexes with denatured actin does not significantly depend on the initial oligomeric state of Hsp27.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号