首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
H. Asker  D. D. Davies 《Planta》1984,161(3):272-280
Four of the five isoenzymes of lactate dehydrogenase present in potato tubers have been isolated and their kinetic properties examined. The pyruvate-reductase activity of isoenzyme-4 is greatly reduced at low pH, the affinity for both pyruvate and NADH is reduced and ATP has a stronger inhibitory effect. If the design properties of an enzyme dictate a high affinity for substrates, then the Km values for lactate, glyoxylate and NAD are consistent with an oxidative role for isoenzyme-4. The same considerations do not permit a conclusion about the physiological role of isoenzymes-1 to-3. However, an overview of the kinetic properties of these isoenzymes indicates that isoenzyme-1 is best adapted for the role of pyruvate reductase. Consideration of the relationships between kinetic constants and electrophoretic mobilities of the isoenzymes, leads us to predict that isoenzyme-5 is well adapted for a role in the oxidation of lactate or glyoxylate. The lactate dehydrogenase of potato leaves appears to consist prodominantly of an isoenzyme with the same mobility as isoenzyme-2 of the tubers and the two isoenzymes are probably identical. The kinetic properties of this isoenzyme are consistent with roles in either oxidation or reduction.Abbreviation Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

2.
Some kinetic properties of pyruvate kinase from rat small intestine have been investigated. The relative insensitivity of the enzyme to ATP inhibition and the amino acid inhibition pattern allows the conclusion that intestinal pyruvate kinase belongs to the M2-type. The pyruvate kinase activity as a function of the phosphoenol pyruvate concentration is characterized by two different n values. The activity correlating with the low n value is stimulated by Fru-1,6-P2, whereas the activity at higher phosphoenol pyruvate concentrations is not influenced by this glycolytic intermediate. These results, together with the partial relief of the amino acid inhibition by Fru-1,6-P2, show that two forms of the enzyme are present with different kinetic properties. The metabolic implication of the kinetic properties of pyruvate kinase for rat small intestine is discussed.  相似文献   

3.
4.
The malate dehydrogenase activity (EC 1.1.1.37), present in the cytoplasm of Pisum sativum root nodules, can be separated by ion-exchange chromatography into four different fractions. Malate dehydrogenase activity present in the cytoplasm of roots elutes mainly as a single peak. During nodule development an increase in malate dehydrogenase activity per gram of material was observed. This increase occurred concomitantly with the increase in nitrogenase activity. The kinetic properties of the separated malate dehydrogenases of root nodule cytoplasm and root cytoplasm were studied. The Km values for malate (2.6 mM), NAD+ (27 microM), oxaloacetate (18 microM) and NADH (13 microM) of the dominant form of the root nodule cytoplasm are much lower than those of the dominant malate dehydrogenase root form (64 mM, 4.4 mM, 89 microM and 70 microM respectively). Binding of malate by the enzyme-NADH complex from root nodules results in an abortive complex, thereby blocking the further reduction of oxaloacetate by NADH. The dominant root malate dehydrogenase does not form the abortive complex. From the kinetic data it is concluded, first, that the root nodule forms of the enzyme are capable of catalysing at a high rate the reduction of oxaloacetate, to meet the demands for malate governed by the bacteroid and the infected plant cell. The second conclusion, drawn from the kinetic data, is that under physiological conditions the conversion of oxaloacetate can be controlled just by the malate concentration. Consequently the major root nodule forms of malate dehydrogenase are able to allow a high flux of malate production from oxaloacetate but also to establish a sufficient oxaloacetate concentration necessary for the assimilation and transport of fixed nitrogen.  相似文献   

5.
As a step toward analyzing the serine biosynthetic pathway in mammals, we have studied the properties of phosphoserine aminotransferase, the second step-catalyzing enzyme. The K(m) values for 3-phosphohydroxypyruvate and L-phosphoserine are 5 and 35 microM, respectively, and those for glutamate and alpha-ketoglutarate are 1.2 and 0.8 mM, respectively. The product inhibition studies strengthened the support for a ping-pong mechanism and allowed evaluation of Ki values for the four substrates. The equilibrium constant evaluated from the kinetic parameters is approximately 40. Additionally, some physical properties relative to the bound coenzyme and the secondary structure were investigated. The results are consistent with a structural relationship between the Escherichia coli enzyme and the mammalian enzyme. The mammalian enzyme has specific kinetic parameters, the determination of which is a prerequisite to analyzing the serine biosynthetic pathway in mammals.  相似文献   

6.
《Free radical research》2013,47(4-6):225-232
Quantifiable redox properties are useful predictors of substrate reactivity in enzyme-catalysed redox reactions of e.g. nitroreductases or peroxidases. Redox properties may also control the rates of electron-transfer reactions between radical products of reduction and oxidation, and endogenous oxidants and reductants respectively. However, in numerous instances prototropic properties of substrate or radical may have profound kinetic consequences, protonation of radicals frequently slowing down electron-transfer reactions. Further, reactions which are thermodynamically extremely unfavourable may still proceed if radical products are removed from the pre-equilibrium efficiently. Thus kinetic considerations often outweigh the purely thermodynamico viewpoint.  相似文献   

7.
Quantifiable redox properties are useful predictors of substrate reactivity in enzyme-catalysed redox reactions of e.g. nitroreductases or peroxidases. Redox properties may also control the rates of electron-transfer reactions between radical products of reduction and oxidation, and endogenous oxidants and reductants respectively. However, in numerous instances prototropic properties of substrate or radical may have profound kinetic consequences, protonation of radicals frequently slowing down electron-transfer reactions. Further, reactions which are thermodynamically extremely unfavourable may still proceed if radical products are removed from the pre-equilibrium efficiently. Thus kinetic considerations often outweigh the purely thermodynamico viewpoint.  相似文献   

8.
Important routes to lipid vesicles (liposomes) are detergent removal techniques, such as dialysis or dilution. Although they are widely applied, there has been only limited understanding about the structural evolution during the formation of vesicles and the parameters that determine their properties. We use time-resolved static and dynamic light scattering to study vesicle formation in aqueous lecithin-bile salt mixtures. The kinetic rates and vesicle sizes are found to strongly depend on total amphiphile concentration and, even more pronounced, on ionic strength. The observed trends contradict equilibrium calculations, but are in agreement with a kinetic model that we present. This model identifies the key kinetic steps during vesicle formation: rapid formation of disk-like intermediate micelles, growth of these metastable micelles, and their closure to form vesicles once line tension dominates bending energy. A comparison of the rates of growth and closure provides a kinetic criterion for the critical size at which disks close and thus for the vesicle size. The model suggests that liposomes are nonequilibrium, kinetically trapped structures of very long lifetime. Their properties are hence controlled by kinetics rather than thermodynamics.  相似文献   

9.
The kinetic properties of MM-isozyme of creatine phosphokinase (CPK) bound to heart myofibrils have been determined experimentally. It has been shown that CPK isozymes bound to the heart myofibrils and mitochondria are electrophoretically different, but have very similar kinetic properties. For both isozymes the ATP formation reaction is preferable. However, in heart mitochondria the kinetic properties of CPK are compensated for by a tight functional coupling with ATP-ADP translocase. Due to this coupling the ATP formed in the course of oxidative phosphorylation can be used completely for creatine phosphate production in mitochondria. On the other hand, the kinetic properties of myofibrillar CPK isozyme are such that they provide for the effective utilization of creatine phosphate produced in mitochondria for rephosphorylation of AKP formed in the myofibrils during contraction. It is concluded that in the heart cells energy can be transferred from the mitochondria to the myofibrils by creatine phosphate molecules.  相似文献   

10.
The D-glucuronyl C5-epimerase involved in the biosynthesis of heparin and heparan sulfate was investigated with focus on its substrate specificity, its kinetic properties, and a comparison of epimerase preparations from the Furth mastocytoma and bovine liver, which synthesize heparin and heparan sulfate, respectively. New substrates for the epimerase were prepared from the capsular polysaccharide of Escherichia coli K5, which had been labeled at C5 of its D-glucuronic and N-acetyl-D-glucosamine moieties by growing the bacteria in the presence of D-[5-(3)H]glucose. Following complete or partial ( approximately 50%) N-deacetylation of the polysaccharide by hydrazinolysis, the free amino groups were sulfated by treatment with trimethylamine.SO(3)complex, which yielded products that were recognized as substrates by the epimerase and released tritium from C5 of the D-glucuronyl residues upon incubation with the enzyme. Comparison of the kinetic properties of the two substrates showed that the fully N-sulfated derivative was the best substrate in terms of its K(m)value, which was significantly lower than that of its partially N-acetylated counterpart. The V(max)values for the E.coli polysaccharide derivatives were essentially the same but were both lower than that of the O-desulfated [(3)H]heparin used in our previous studies. Surprisingly, the apparent K(m)values for all three substrates increased with increasing enzyme concentration. The reason for this phenomenon is not entirely clear at present. Partially purified C5-epimerase preparations from the Furth mastocytoma and bovine liver, respectively, behaved similarly in terms of their reactivity towards the various substrates, but the variation in apparent K(m)values with enzyme concentration precluded a detailed comparison of their kinetic properties.  相似文献   

11.
Measuring the kinetics of membrane phase transitions   总被引:2,自引:0,他引:2  
This article presents a brief review of literature on the physical chemistry of lipid phase transitions with emphasis on their kinetic properties. The theoretical foundations of perturbation techniques, and specifically the volume-perturbation technique are discussed in some detail. These are presented as a rationale for, and introduction to, a volume-perturbation kinetic calorimeter that we have constructed for measurement of the kinetics of lipid phase transitions. The instrument has been applied to study the gel-liquid crystalline phase transition in a variety of phospholipid bilayer systems. The design and implementation of the volume-perturbation calorimeter are presented along with a discussion of the techniques of data analysis. Finally, we present typical results obtained with this methodology for a multilamellar vesicle dispersion of dipalmitoylphosphatidylcholine.  相似文献   

12.
DGUOK [dG (deoxyguanosine) kinase] is one of the two mitochondrial deoxynucleoside salvage pathway enzymes involved in precursor synthesis for mtDNA (mitochondrial DNA) replication. DGUOK is responsible for the initial rate-limiting phosphorylation of the purine deoxynucleosides, using a nucleoside triphosphate as phosphate donor. Mutations in the DGUOK gene are associated with the hepato-specific and hepatocerebral forms of MDS (mtDNA depletion syndrome). We identified two missense mutations (N46S and L266R) in the DGUOK gene of a previously reported child, now 10 years old, who presented with an unusual revertant phenotype of liver MDS. The kinetic properties of normal and mutant DGUOK were studied in mitochondrial preparations from cultured skin fibroblasts, using an optimized methodology. The N46S/L266R DGUOK showed 14 and 10% residual activity as compared with controls with dG and deoxyadenosine as phosphate acceptors respectively. Similar apparent negative co-operativity in the binding of the phosphate acceptors to the wild-type enzyme was found for the mutant. In contrast, abnormal bimodal kinetics were shown with ATP as the phosphate donor, suggesting an impairment of the ATP binding mode at the phosphate donor site. No kinetic behaviours were found for two other patients with splicing defects or premature stop codon. The present study represents the first characterization of the enzymatic kinetic properties of normal and mutant DGUOK in organello and our optimized protocol allowed us to demonstrate a residual activity in skin fibroblast mitochondria from a patient with a revertant phenotype of MDS. The residual DGUOK activity may play a crucial role in the phenotype reversal.  相似文献   

13.
The kinetic properties of the activation by monovalent cations of the amidolytic activity of bovine des-1-41 light chain activated protein C have been examined. With the cations Cs+, K+, Li+, and Tl+, a single cation site, or class of sites, has been found to be responsible for the stimulation observed, with kinetic Ka values of 98-110, 180-210, 300-310, and 14-16 mM, respectively. The mechanism proposed for participation of these cations in the enzyme reaction involves an ordered addition, with the binding of cation preceding the binding of the amide substrate. On the other hand, the kinetic properties of this same activation by Na+ are consistent with either two cation sites, or classes of sites, of importance. Once again, however, the mechanism of the reaction appears to be of the ordered type, with cation binding occurring prior to substrate binding.  相似文献   

14.
1. The preparation of enzymically active N-citraconyl derivatives of fructose diphosphate aldolase from rabbit muscle is described. Reaction is restricted to amino groups and the derivatives are not very heterogeneous with respect to the number of substituents. 2. Linear double-reciprocal plots of enzyme velocity against substrate concentration are found up to about 15% blocking of amino groups. With more than 15% blocking, there is a marked downward curvature in the double-reciprocal plots at high substrate concentrations. 3. Over the range 0-25% blocking of amino groups the apparent V(max.) for fructose diphosphate falls to 10% that of the native enzyme, and the apparent K(m) rises from 1 to 400mum. 4. Various pieces of evidence suggest that citraconyl-aldolase is slightly distorted in structure compared with the native enzyme. However, the kinetic properties and tetrameric structure of citraconyl-aldolase can be completely recovered after denaturation in 4m-guanidine hydrochloride. 5. After removal of the citraconyl groups in acid conditions the kinetic and molecular properties of native enzyme are restored. 6. Hybrid forms of aldolase can be constructed containing native and citraconylated subunits and the suitability of these derivatives for the study of subunit interactions in the enzyme is discussed. 7. The kinetic properties of hybridized aldolase containing native and citraconylated subunits are not exactly those predicted from the kinetic properties of the two parental forms. This result is interpreted in terms of conformational changes induced in the native and modified subunits when both are present in a hybrid molecule, evidently as a result of interactions in the tetramer.  相似文献   

15.
The Na+/H+ antiport is present in the plasma membrane of virtually all vertebrate cells and it plays a central role in cell homeostasis. The pharmacological properties and the characteristics of the interaction of extracellular Na+, Li+, H+ and of intracellular H+ with the Na+/H+ antiport are reviewed herein. The kinetic properties of the system are shown to be essential for defining its four main physiological functions: transepithelial ion transport, control of the pHi, control of the intracellular Na+ concentration, and control of the cell volume. The activity of the Na+/H+ antiport can be modulated by a large number of effectors which are thought to act via protein kinases. At least three mechanisms of activation of the Na+/H+ exchanger are defined from the analysis of the kinetic properties of the system. Activation of the Na+/H+ antiport leads to very different consequences, depending upon the activity of other ion transporting systems in the membrane.  相似文献   

16.
Nucleotide-metabolizing enzymes play an important role in the regulation of nucleotide levels. In the present report, we demonstrated an enzyme activity with different kinetic properties in membrane preparations of the nervous ganglia and digestive gland from Helix aspersa. ATPase and ADPase activities were dependent on Ca2+ and Mg2+ with pH optima approximately 7.2 and between 6.0 and 8.0 in digestive gland and nervous ganglia, respectively. The enzyme activities present in membrane preparations of these tissues preferentially hydrolyzed triphosphate nucleotides. In nervous ganglia, the enzyme was insensitive to the classical ATPases inhibitors. In contrast, in digestive gland, N-ethylmaleimide (NEM) produced 45% inhibition of Ca(2+)-ATP hydrolysis. Sodium azide, at 100 microM and 20 mM, inhibited Mg(2+)-ATP hydrolysis by 36% and 55% in digestive gland, respectively. The presence of nucleotide-metabolizing enzymes in these tissues may be important for the modulation of nucleotide and nucleoside levels, controlling their actions on specific purinoceptors in these species.  相似文献   

17.
Viscosimetric and kinetic results allow one to characterize three modes of DNA binding in the ellipticine series: (1) Ellipticine and its 9 methoxy derivative, which present maximal DNA lengthening properties and bind DNA through a single step mechanism, can be considered as pure intercalators. (2) Ellipticinium derivatives and short-chain substituted oxazolopyridocarbazoles, which present intermediate DNA lengthening properties, bind DNA through a two-step mechanism, one being intercalation. (3) Long-chain substituted oxazolopyridocarbazole derivatives, which display the smallest DNA lengthening properties, bind DNA through a single-step mechanism, probably resulting from an outside binding mode. The viscosimetric and kinetic results are compared with the thermodynamic results obtained from the temperature dependence of the binding constants. It appears that drugs binding on the outside of the DNA double helix tend to have large enthalpy and small entropy contributions, whereas pure intercalating drugs have contributions from both enthalpy and entropy, with entropy dominating by about 2:1. Drugs showing two binding modes exhibit a continuum between the aforementioned extremes, with no breaks in behavior. From this comparison, a correlation between thermodynamic data and DNA binding modes is proposed. Possible molecular implications of both enthalpy and entropy to DNA binding free energy are discussed.  相似文献   

18.
The kinetic parameters of beef heart cytoplasmic and pig heart mitochondrial malate dehydrogenases have been examined over a wide range of enzyme concentration. No significant changes are observed in these properties. In conjunction with active enzyme sedimentation and sedimentation equilibrium experiments, it is concluded that there is no evidence for dissociation of the dimeric enzyme at any enyzme level in the kinetic analyses. Thus, if dissociation occurs, it must be too slow to be of significance in determining the kinetic properties of the enzyme. It is shown that unless a subunit and its dimeric form have identical kinetic and substrate binding characteristics, the kinetic parameters should change as a function of enzyme concentration.  相似文献   

19.
Summary The erythrocytic and liver pyruvate kinases (PK) from a patient with congenital nonspherocytic hemolytic anemia have been studied. In red blood cells, the residual activity, 28% of the normal control, presented normal kinetic properties, instability to heat and urea, and slow electrophoretic mobility. The L-type PK from the patient's liver was characterized by normal activity, kinetic properties, stability to heat and urea, and electrophoretic mobility. The fact that erythrocyte mutant PK may, as in previous reports, or may not be associated, as in the present observation, with molecular abnormalities of the liver PK provides support for the hypothesis of a gene rearrangement compatible with two different tissue-specific mRNAs.  相似文献   

20.
Microtubules form organized polymer networks in cells. Experimental evidence indicates that their mechanical properties do not play a significant role in the generation of such regular patterns. This spatial organization seems closely related to their dynamic behavior. Here we use mathematical modeling to define conditions under which microtubular dynamics result in self organization. We demonstrate that random diffusional processes can generate regular microtubule organizations under specified kinetic conditions which are found to be compatible with the known properties of tubulin polymers. The organizing forces are the tubulin concentration gradients which are generated by the polymer growth. The present analysis has been restricted to the phase of establishment of the microtubule network. The same conceptual framework, applied to steady state pattern maintenance suggests that the kinetic requirements for self organization might ultimately be responsible for such extraordinary in vivo microtubule dynamics, as the rapid turnover and “dynamic instability” of the interphase network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号