共查询到20条相似文献,搜索用时 15 毫秒
1.
Polarized epithelial cells represent the primary barrier to virus infection of the host, which must also be traversed prior to virus dissemination from the infected organism. Although there is considerable information available concerning the release of enveloped viruses from such cells, relatively little is known about the processes involved in the dissemination of nonenveloped viruses. We have used two polarized epithelial cell lines, Vero C1008 (African green monkey kidney epithelial cells) and Caco-2 (human intestinal epithelial cells), infected with poliovirus and investigated the process of virus release. Release of poliovirus was observed to occur almost exclusively from the apical cell surface in Caco-2 cells, whereas infected Vero C1008 cells exhibited nondirectional release. Structures consistent with the vectorial transport of virus contained within vesicles or viral aggregates were observed by electron microscopy. Treatment with monensin or ammonium chloride partially inhibited virus release from Caco-2 cells. No significant cell lysis was observed at the times postinfection when extracellular virus was initially detected, and transepithelial resistance and vital dye uptake measurements showed only a moderate decrease. Brefeldin A was found to significantly and specifically inhibit poliovirus biosynthetic processes by an as yet uncharacterized mechanism. The vectorial release of poliovirus from the apical (or luminal) surface of human intestinal epithelial cells has significant implications for viral pathogenesis in the human gut. 相似文献
2.
Apical entry and release of severe acute respiratory syndrome-associated coronavirus in polarized Calu-3 lung epithelial cells
下载免费PDF全文

Severe acute respiratory syndrome (SARS), caused by a novel coronavirus (CoV) known as SARS-CoV, is a contagious and life-threatening respiratory illness with pneumocytes as its main target. A full understanding of how SARS-CoV would interact with lung epithelial cells will be vital for advancing our knowledge of SARS pathogenesis. However, an in vitro model of SARS-CoV infection using relevant lung epithelial cells is not yet available, making it difficult to dissect the pathogenesis of SARS-CoV in the lungs. Here, we report that SARS-CoV can productively infect human bronchial epithelial Calu-3 cells, causing cytopathic effects, a process reflective of its natural course of infection in the lungs. Indirect immunofluorescence studies revealed a preferential expression of angiotensin-converting enzyme 2 (ACE-2), the functional receptor of SARS-CoV, on the apical surface. Importantly, both ACE-2 and viral antigen appeared to preferentially colocalize at the apical domain of infected cells. In highly polarized Calu-3 cells grown on the membrane inserts, we found that cells exposed to virus through the apical rather than the basolateral surface showed high levels of viral replication. Progeny virus was released into the apical chamber at titers up to 5 logs higher than those recovered from the basolateral chambers of polarized cultures. Taken together, these results indicate that SARS-CoV almost exclusively entered and was released from the apical domain of polarized Calu-3 cells, which might provide important insight into the mechanism of transmission and pathogenesis of SARS-CoV. 相似文献
3.
Entry of simian virus 40 is restricted to apical surfaces of polarized epithelial cells. 总被引:15,自引:0,他引:15
下载免费PDF全文

The uptake of simian virus 40 (SV40) by polarized epithelial cells was investigated by growth of cells on permeable supports and inoculation on either the apical or the basolateral surface. Binding of radiolabeled SV40 occurred on the apical but not the basolateral surfaces of permissive polarized Vero C1008 cells and nonpermissive polarized MDCK cells. When similar experiments were performed on nonpolarized Vero or CV-1 cells, virus binding occurred regardless of the direction of virus input. Electron micrographs of Vero C1008 cells infected at high multiplicities revealed virions lining the surfaces of apically infected cells, while the surfaces of basolaterally infected cells were devoid of virus particles. Analysis of the binding data revealed a single class of virus receptors (9 x 10(4) per cell) with a high affinity for SV40 (Kd = 3.76 pM) on the apical surfaces of Vero C 1008 cells. Indirect immunofluorescence studies revealed that synthesis of viral capsid proteins in Vero C1008 cells occurred only when input virions had access to the apical surface. Virus yields from apically infected Vero C1008 cells were 10(5) PFU per cell, while yields obtained from basolaterally infected cells were less than one PFU per cell. These results indicate that a specific receptor for SV40 is expressed exclusively on the apical surfaces of polarized Vero C1008 cells. 相似文献
4.
The MAL proteolipid is an integral membrane protein identified as a component of the raft machinery for apical sorting of membrane proteins in Madin-Darby canine kidney (MDCK) cells. Previous studies have implicated lipid rafts in the transport of exogenous thyroglobulin (Tg), the predominant secretory protein of thyroid epithelial cells, to the apical surface in MDCK cells. We have examined the secretion of recombinant Tg and gp80/clusterin, a major endogenous secretory protein not detected in Triton X-100 insoluble rafts, for the investigation of the involvement of MAL in the constitutive apical secretory pathway of MDCK cells. We show that MAL depletion impairs apical secretion of Tg and causes its accumulation in the Golgi. Cholesterol sequestration, which blocks apical secretion of Tg, did not alter the levels of MAL in rafts but created a block proximal to Tg entrance into rafts. Apical secretion of gp80/clusterin was also inhibited by elimination of endogenous MAL. Our results suggest a role for MAL in the transport of both endogenously and exogenously expressed apical secretory proteins in MDCK cells. 相似文献
5.
Two lectin-resistant mutants derived from Madin Darby canine kidney cells, with constitutive alterations in the asparagine-linked carbohydrate moieties, retained the characteristic structural and functional epithelial polarity of the parental cells. A ricin-resistant cell line was unable to incorporate galactose-sialic acid into glycoproteins and, from the pattern of cross-resistance to other lectins, appears to be different from previously described lines resistant to this lectin: the mutation in a concanavalin A-resistant line results, probably, in the production of defective carbohydrate cores of glycoproteins. In spite of glycosylation defects which result in an increased electrophoretic mobility of many cellular glycoproteins, both mutants retained the typical asymmetric structure of the plasma membrane (microvilli on the apical surface, junctional elements on the basolateral surface), functional tight junctions, and unidirectional active transport of electrolytes and water. These results suggest that glycoproteins with terminal galactose-sialic acid moieties are not critically involved in the development and maintenance of polarity in epithelial cells. The mutant cells, particularly the ricin-resistant line, exhibited, however, morphological and electrophysiological changes which suggest a quantitative effect of the mutations on intracellular traffic of membranes and tight junction formation. The cell lines described in this paper, the first lectin-resistant mutants of epithelial lineage, should prove useful tools for studying the peculiarities of glycosylating pathways in polarized cells. 相似文献
6.
Regulated synthesis and functions of laminin 5 in polarized madin-darby canine kidney epithelial cells
下载免费PDF全文

Mak GZ Kavanaugh GM Buschmann MM Stickley SM Koch M Goss KH Waechter H Zuk A Matlin KS 《Molecular biology of the cell》2006,17(8):3664-3677
Renal tubular epithelial cells synthesize laminin (LN)5 during regeneration of the epithelium after ischemic injury. LN5 is a truncated laminin isoform of particular importance in the epidermis, but it is also constitutively expressed in a number of other epithelia. To investigate the role of LN5 in morphogenesis of a simple renal epithelium, we examined the synthesis and function of LN5 in the spreading, proliferation, wound-edge migration, and apical-basal polarization of Madin-Darby canine kidney (MDCK) cells. MDCK cells synthesize LN5 only when subconfluent, and they degrade the existing LN5 matrix when confluent. Through the use of small-interfering RNA to knockdown the LN5 alpha3 subunit, we were able to demonstrate that LN5 is necessary for cell proliferation and efficient wound-edge migration, but not apical-basal polarization. Surprisingly, suppression of LN5 production caused cells to spread much more extensively than normal on uncoated surfaces, and exogenous keratinocyte LN5 was unable to rescue this phenotype. MDCK cells also synthesized laminin alpha5, a component of LN10, that independent studies suggest may form an assembled basal lamina important for polarization. Overall, our findings indicate that LN5 is likely to play an important role in regulating cell spreading, migration, and proliferation during reconstitution of a continuous epithelium. 相似文献
7.
The proteoglycan serglycin (SG) fused to green fluorescent protein (GFP) is secreted predominantly from the apical surface of polarized epithelial Madin-Darby canine kidney (MDCK) cell monolayers, but the minor fraction secreted basolaterally carries more intensely sulfated glycosaminoglycan (GAG) chains (Tveit H, Dick G, Skibeli V, Prydz K. 2005. A proteoglycan undergoes different modifications en route to the apical and basolateral surfaces of Madin-Darby canine kidney cells. J Biol Chem 280: 29596-29603). To investigate whether the domain with GAG attachment sites in SG (i) is sufficient to drive apical protein sorting and (ii) independently generates the sulfation differences observed in the apical and basolateral pathways, the GAG domain of SG was fused into the junction of rat growth hormone (rGH) and GFP and expressed in MDCK cells, either with or without two N-glycosylation sites in the rGH part. Both variants acquired chondroitin sulfate GAG chains and were secreted predominantly to the apical medium, to the same extent as rGH-GFP with two N-glycosylation sites only, and different from the nonsorted variant lacking glycosylation sites. Transfer of the GAG attachment domain from SG to the new rGH context abolished the differences in sulfation intensity and positions observed for SG in the apical and basolateral secretory routes. Thus, these differences are coded by elements outside the GAG attachment domain. 相似文献
8.
Bozym RA Patel K White C Cheung KH Bergelson JM Morosky SA Coyne CB 《Molecular biology of the cell》2011,22(17):3010-3021
Coxsackievirus B (CVB), a member of the enterovirus family, targets the polarized epithelial cells lining the intestinal tract early in infection. Although the polarized epithelium functions as a protective barrier, this barrier is likely exploited by CVB to promote viral entry and subsequent egress. Here we show that, in contrast to nonpolarized cells, CVB-infected polarized intestinal Caco-2 cells undergo nonapoptotic necrotic cell death triggered by inositol 1,4,5-trisphosphate receptor-dependent calcium release. We further show that CVB-induced cellular necrosis depends on the Ca(2+)-activated protease calpain-2 and that this protease is involved in CVB-induced disruption of the junctional complex and rearrangements of the actin cytoskeleton. Our study illustrates the cell signaling pathways hijacked by CVB, and perhaps other viral pathogens, to promote their replication and spread in polarized cell types. 相似文献
9.
Human respiratory syncytial virus (HRSV) is released from the apical membrane of polarized epithelial cells. However, little is known about the processes of assembly and release of HRSV and which viral gene products are involved in the directional maturation of the virus. Based on previous studies showing that the fusion (F) glycoprotein contained an intrinsic apical sorting signal and that N- and O-linked glycans can act as apical targeting signals, we investigated whether the glycoproteins of HRSV were involved in its directional targeting and release. We generated recombinant viruses with each of the three glycoprotein genes deleted individually or in groups. Each deleted gene was replaced with a reporter gene to maintain wild-type levels of gene expression. The effects of deleting the glycoprotein genes on apical maturation and on targeting of individual proteins in polarized epithelial cells were examined by using biological, biochemical, and microscopic assays. The results of these studies showed that the HRSV glycoproteins are not required for apical maturation or release of the virus. Further, deletion of one or more of the glycoprotein genes did not affect the intracellular targeting of the remaining viral glycoproteins or the nucleocapsid protein to the apical membrane. 相似文献
10.
Differential targeting of an epithelial plasma membrane glycoprotein in polarized Madin-Darby canine kidney cells 总被引:3,自引:0,他引:3
Using monoclonal antibodies directed against the plasma membrane of Madin-Darby canine kidney (MDCK) cells, we demonstrated previously that a glycoprotein with an Mr = 23,000 (gp23) had a non-polarized cell surface distribution and was observed on both the apical and basolateral membranes (Ojakian, G. K., Romain, R. E., and Herz, R. E. (1987) Am. J. Physiol. 253, C433-C443). However, in parallel studies on MDCK clonal lines (D11, D18) with high transepithelial electrical resistances and in kidney cells in vivo it was determined that gp23 had a polarized cell surface distribution, being localized only to the basolateral membrane. The cell surface distribution of other glycoproteins was identical in both MDCK and MDCK clonal lines, indicating that MDCK cells were not deficient in the ability to properly sort membrane glycoproteins. Metabolic labeling with radioactive substrates followed by immunopurification and gel electrophoresis demonstrated that gp23 from both MDCK and MDCK clone D11 had many biochemical similarities including electrophoretic mobility, glycosylation, and palmitate incorporation. However, proteolytic digestion of gp23 from MDCK and clone D11 cells produced unique peptide maps suggesting that these closely related glycoproteins may have different primary sequences. In this report, we present evidence that the differential targeting of gp23 may be due to differences between the primary sequences of the basolateral and non-targeted proteins. The possibility that the observed differences in gp23 targeting are due to the presence of a basolateral recognition signal in gp23 from clone D11 cells is discussed. 相似文献
11.
Apical gene transfer into quiescent human and canine polarized intestinal epithelial cells by lentivirus vectors 总被引:4,自引:0,他引:4
下载免费PDF全文

Seppen J Barry SC Klinkspoor JH Katen LJ Lee SP Garcia JV Osborne WR 《Journal of virology》2000,74(16):7642-7645
Intestinal epithelial cells secrete a protective luminal mucus barrier inhibiting viral gene transfer. Quiescent, polarized monolayers of primary epithelial cells from dog gallbladder and human colon are efficiently transduced through the apical mucus side by lentivirus vectors, suggesting their application to intestinal gene therapy. 相似文献
12.
We have investigated the maturation sites of avian and mammalian C-type retroviruses in polarized epithelial cells. Examination of thin sections of Madin Darby canine kidney cells infected with RD114 or avian reticuloendotheliosis virus revealed that these viruses mature from the basolateral membrane domains. Similar results were obtained with a continuous line of mouse mammary epithelial cells infected with Friend, Moloney, Rauscher, or Kirsten murine leukemia viruses, or Friend virus-related or Moloney virus-related mink cell focus-forming viruses. Immunofluorescence observations indicate that viral glycoproteins are inserted only at the basolateral membranes in these cells. Because of the availability of DNA and protein sequence data, and of molecularly cloned viruses, these virus systems offer advantages for molecular studies on directional transport of plasma membrane glycoproteins. 相似文献
13.
The interactions of viruses with polarized epithelial cells are of some significance to the pathogenesis of disease because these cell types comprise the primary barrier to many virus infections and also serve as the sites for virus release from the host. Poliovirus-epithelial cell interactions are of particular interest since this virus is an important enteric pathogen and the host cell receptor has been identified. In this study, poliovirus was observed to adsorb to both the apical and basolateral surfaces of polarized monkey kidney (Vero C1008) and human intestinal (Caco-2) epithelial cells but exhibited preferential binding to the basolateral surfaces of both cell types. Localization of the poliovirus receptor by a receptor-specific monoclonal antibody (D171) revealed a similar distribution predominantly on basolateral membranes, and treatment of cells with antibody D171 inhibited virus adsorption to both membrane surfaces. Poliovirus was able to initiate infection with similar efficiency following adsorption to either surface, and infection was blocked at both surfaces by D171, indicating that functional receptor molecules are expressed on both surfaces at sufficient density to mediate efficient infection at the apical and basolateral plasma membranes. Poliovirus infection resulted in a decrease in transepithelial resistance which was inhibited by prior treatment with monoclonal antibody D171 and occurred prior to other visible cytopathic effects. These results have interesting implications for viral pathogenesis in the human gut. 相似文献
14.
Coronavirus infection of polarized epithelial cells 总被引:2,自引:0,他引:2
Epithelial cells are the first host cells to be infected by incoming coronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for the directional sorting of coronaviruses might be similar to those governing the polar release of secretory proteins. 相似文献
15.
Shuai Lu Yingzhu Chen Kun Qin Jianfang Zhou Yongliang Lou Wenjie Tan 《中国科学:生命科学英文版》2016,59(6):615-621
To characterize the antigenicity of nucleocapsid proteins (NP) derived from canine coronavirus (CCoV) and canine respiratory coronavirus (CRCoV) in China, the N genes of CCoV (CCoV-BJ70) and CRCoV (CRCoV-BJ202) were cloned from swabs obtained from diseased pet dogs in Beijing and then sequenced. The recombinant NPs (rNPs) were expressed in Escherichia coli and purified by nickel-affinity column and size exclusion chromatography. Sequencing data indicated that the N genes of CCoV-BJ70 and CRCoV-BJ202 belonging to two distinctly different groups were relatively conserved within each subgroup. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that rNPs of CCoV and CRCoV were expressed efficiently and isolated with a final purity of over 95%. Western blot analysis revealed the rNP from CRCoV could cross-react with mice antisera against human coronavirus (HCoV-229E, NL63, OC43, HKU1), while rNP of CCoV had cross-reactivity with only anti-sera against viruses belonging to the same group (HCoV-229E and NL63). In summary, CCoV and CRCoV rNPs were successfully expressed in E. coli and showed antigenic cross-reactivity with antisera raised against human coronaviruses. These findings indicate that further serologic studies on coronavirus infections at the animal-human interface are needed. 相似文献
16.
W L Beatty S Méresse P Gounon J Davoust J Mounier P J Sansonetti J P Gorvel 《The Journal of cell biology》1999,145(4):689-698
Bacterial lipopolysaccharide (LPS) at the apical surface of polarized intestinal epithelial cells was previously shown to be transported from the apical to the basolateral pole of the epithelium (Beatty, W.L., and P.J. Sansonetti. 1997. Infect. Immun. 65:4395-4404). The present study was designed to elucidate the transcytotic pathway of LPS and to characterize the endocytic compartments involved in this process. Confocal and electron microscopic analyses revealed that LPS internalized at the apical surface became rapidly distributed within endosomal compartments accessible to basolaterally internalized transferrin. This compartment largely excluded fluid-phase markers added at either pole. Access to the basolateral side of the epithelium subsequent to trafficking to basolateral endosomes occurred via exocytosis into the paracellular space beneath the intercellular tight junctions. LPS appeared to exploit other endocytic routes with much of the internalized LPS recycled to the original apical membrane. In addition, analysis of LPS in association with markers of the endocytic network revealed that some LPS was sent to late endosomal and lysosomal compartments. 相似文献
17.
Wakabayashi Y Chua J Larkin JM Lippincott-Schwartz J Arias IM 《Histochemistry and cell biology》2007,127(5):463-472
Understanding how epithelial cells generate and maintain polarity and function requires live cell imaging. In order for cells to become fully polarized, it is necessary to grow them on a permeable membrane filter; however, the translucent filter obstructs the microscope light path required for quantitative live cell imaging. Alternatively, the membrane filter may be excised but this eliminates selective access to apical and basolateral surfaces. Conversely, epithelial cells cultured directly on glass exhibit different phenotypes and functions from filter grown cells. Here, we describe a new method for culturing polarized epithelial cells on a Transwell filter insert that allows superior live cell imaging with spatial and temporal image resolution previously unachievable using conventional methods. Cells were cultured on the underside of a filter support. Epithelial cells grown in this inverted configuration exhibit a fully polarized architecture, including the presence of functional tight junctions. This new culturing system permits four-dimensional (three spatial dimension over time) imaging of endosome and Golgi apparatus dynamics, and permits selective manipulation of the apical and basolateral surfaces. This new technique has wide applicability for visualization and manipulation of polarized epithelial cells. 相似文献
18.
R L Zarnke J Evermann J M Ver Hoef M E McNay R D Boertje C L Gardner L G Adams B W Dale J Burch 《Journal of wildlife diseases》2001,37(4):740-745
Wolves (Canis lupus) were captured in three areas of Interior Alaska (USA). Four hundred twenty-five sera were tested for evidence of exposure to canine coronavirus by means of an indirect fluorescent antibody procedure. Serum antibody prevalence averaged 70% (167/240) during the spring collection period and 25% (46/185) during the autumn collection period. Prevalence was 0% (0/42) in the autumn pup cohort (age 4-5 mo), and 60% (58/97) in the spring pup cohort (age 9-10 mo). Prevalence was lowest in the Eastern Interior study area. A statistical model indicates that prevalence increased slightly each year in all three study areas. These results indicate that transmission occurs primarily during the winter months, antibody decay is quite rapid, and reexposure during the summer is rare. 相似文献
19.
TGN38 recycles basolaterally in polarized Madin-Darby canine kidney cells. 总被引:3,自引:2,他引:3
下载免费PDF全文

A K Rajasekaran J S Humphrey M Wagner G Miesenbck A Le Bivic J S Bonifacino E Rodriguez-Boulan 《Molecular biology of the cell》1994,5(10):1093-1103
Sorting of newly synthesized plasma membrane proteins to the apical or basolateral surface domains of polarized cells is currently thought to take place within the trans-Golgi network (TGN). To explore the relationship between protein localization to the TGN and sorting to the plasma membrane in polarized epithelial cells, we have expressed constructs encoding the TGN marker, TGN38, in Madin-Darby canine kidney (MDCK) cells. We report that TGN38 is predominantly localized to the TGN of these cells and recycles via the basolateral membrane. Analyses of the distribution of Tac-TGN38 chimeric proteins in MDCK cells suggest that the cytoplasmic domain of TGN38 has information leading to both TGN localization and cycling through the basolateral surface. Mutations of the cytoplasmic domain that disrupt TGN localization also lead to nonpolarized delivery of the chimeric proteins to both surface domains. These results demonstrate an apparent equivalence of basolateral and TGN localization determinants and support an evolutionary relationship between TGN and plasma membrane sorting processes. 相似文献
20.
W J Nelson 《Seminars in cell biology》1991,2(6):375-385
The complexity of membrane traffic in polarized epithelial cells between the Golgi complex and either the apical or basal-lateral membrane domain, and between different membrane domains (transcytosis) requires that vesicles leaving one membrane compartment efficiently and rapidly reach their (correct) destination. There is increasing evidence that microtubules, actin microfilaments and the membrane-cytoskeleton are involved in several aspects of vesicle transport and in the regulation of protein distributions in polarized epithelial cells. These possible functions are discussed in the context of the development and maintenance of cell polarity. 相似文献