首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon monoxide (CO) dehydrogenase was purified, both aerobically and anaerobically, to apparent homogeneity from Methanothrix soehngenii. The enzyme contained 18 +/- 2 (n = 6) mol Fe/mol and 2.0 +/- 0.1 (n = 6) mol Ni/mol. Electron paramagnetic resonance (EPR) spectra of the aerobically purified CO dehydrogenase showed one sharp EPR signal at g = 2.014 with several characteristics of a [3Fe-4S]1+ cluster. The integrated intensity of this signal was low, 0.03 S = 1/2 spin/alpha beta dimer. The 3Fe spectrum was not affected by incubation with CO or acetyl-coenzyme A, but could be reduced by dithionite. The spectrum of the reduced, aerobically purified enzyme showed complex EPR spectra, which had several properties typical of two [4Fe-4S]1+ clusters, whose S = 1/2 spins weakly interacted by dipolar coupling. The integrated intensity was 0.1-0.2 spin/alpha beta dimer. The anaerobically isolated enzyme showed EPR spectra different from the reduced aerobically purified enzyme. Two major signals were apparent. One with g values of 2.05, 1.93 and 1.865, and an Em7.5 of -410 mV, which quantified to 0.9 S = 1/2 spin/alpha beta dimer. The other signal with g values of 1.997, 1.886 and 1.725, and an Em7.5 of -230 mV gave 0.1 spin/alpha beta dimer. When the enzyme was incubated with its physiological substrate acetyl-coenzyme A, these two major signals disappeared. Incubation of the enzyme under CO atmosphere resulted in a partial disappearance of the spectral component with g = 1.997, 1.886, 1.725. Acetyl-coenzyme A/CO exchange activity, 35 nmol.min-1.mg-1 protein, which corresponded to 7 mol CO exchanged min-1 mol-1 enzyme, could be detected in anaerobic enzyme preparations, but was absent in aerobic preparations. Carbon dioxide also exchanged with C-1 of acetyl-coenzyme A, but at a much lower rate than CO and to a much lower extent.  相似文献   

2.
An inorganic pyrophosphatase [E.C. 3.6.1.1] was isolated from Methanothrix soehngenii. In three steps the enzyme was purified 400-fold to apparent homogeneity. The molecular mass estimated by gelfiltration was 139±7 kDa. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis indicated that the enzyme is composed of subunits with molecular masses of 35 and 33 kDa in an 2 2 oligomeric structure. The enzyme catalyzed the hydrolysis of inorganic pyrophosphate, tri-and tetrapolyphosphate, but no activity was observed with a variety of other phosphate esters. The cation Mg2+ was required for activity. The pH optimum was 8 at 1 mM PP i and 5 mM Mg2+. The enzyme was heat-stable, insensitive to molecular oxygen and not inhibited by fluoride. Analysis of the kinetic properties revealed an apparent K m for PP i of 0.1 mM in the presence of 5 mM Mg2+. The V max was 590 mol of pyrophosphate hydrolyzed per min per mg protein, which corresponds to a K cat of 1400 per second.The enzyme was found in the soluble enzyme fraction after ultracentrifugation, when cells were disrupted by French Press. Upto 5% of the pyrophosphatase was associated with the membrane fraction, when gentle lysis procedyre were applied.Abbreviation PMSF phenylmethylsulfonyl fluoride  相似文献   

3.
Carbon monoxide dehydrogenase and methyl-coenzyme M reductase were purified from 61Ni-enriched and natural-abundance nickel-grown cells of the methanogenic archae Methanothrix soehngenii. The nickel-EPR signal from cofactor F-430 in methyl-CoM reductase was of substoichiometric intensity and exhibited near-axial symmetry with g = 2.153, 2.221 and resolved porphinoid nitrogen superhyperfine splittings of approximately 1 mT. In the spectrum from 61Ni-enriched enzyme a well-resolved parallel I = 3/2 nickel hyperfine splitting was observed, A parallel = 4.4 mT. From a computer simulation of this spectrum the final enrichment in 61Ni was estimated to be 69%, while the original enrichment of the nickel metal was 87%. Carbon monoxide dehydrogenase isolated from the same batch exhibited four different EPR spectra. However, in none of these signals could any splitting or broadening from 61Ni be detected. Also, the characteristic g = 2.08 EPR signal found in some other carbon monoxide dehydrogenases and ascribed to a Ni-Fe-C complex, was never observed by us under any conditions of detection (4 to 100 K) and incubation in the presence of ferricyanide, dithionite, CO, coenzyme A, or acetyl-coenzyme A. Novel, high-spin EPR was found in the oxidized enzyme with effective g-values at g = 14.5, 9.6, 5.5, 4.6, 4.2, 3.8. The lines at g = 14.5 and 5.5 were tentatively ascribed to an S = 9/2 system (approximately 0.3 spins/alpha beta) with rhombicity E/D = 0.047 and D less than 0. The other signals were assigned to an S = 5/2 system (0.1 spins/alpha beta) with E/D = 0.27. Both sets of signals disappear upon reduction with Em,7.5 = - 280 mV. With a very similar reduction potential, Em,7.5 = - 261 mV, an S = 1/2 signal (0.1 spins/alpha beta) appears with the unusual g-tensor 2.005, 1.894, 1.733. Upon further lowering of the potential the putative double cubane signal also appears. At a potential E approximately - 320 mV the double cubane is only reduced by a few percent and this allows the detection of individual cubane EPR not subjected to dipolar interaction; a single spectral component is observed with g-tensor 2.048, 1.943, 1.894.  相似文献   

4.
Carbon monoxide dehydrogenase was purified to apparent homogeneity from Methanothrix soehngenii. In contrast with the carbon monoxide dehydrogenases from most other anaerobic bacteria, the purified enzyme of Methanothrix soehngenii was remarkably stable towards oxygen and it was only slightly inhibited by cyanide. The native molecular mass of the carbon monoxide dehydrogenase of Methanothrix soehngenii determined by gel filtration was 190 kDa. The enzyme is composed of subunits with molecular mass of 79.4 kDa and 19.4 kDa in an alpha 2 beta 2 oligomeric structure. The enzyme contains 1.9 +/- 0.2 (n = 3) mol Ni/mol and 19 +/- 3 (n = 3) mol Fe/mol and it constitutes 4% of the soluble cell protein. Analysis of enzyme kinetic properties revealed a Km of 0.7 mM for CO and of 65 microM for methyl viologen. At the optimum pH of 9.0 the Vmax was 140 mumol of CO oxidized min-1 mg protein-1. The enzyme showed a high degree of thermostability.  相似文献   

5.
6.
7.
Abstract In Methanothrix soehngenii acetate is first activated by an acetate thiokinase rather than a phosphotransacetylase. The specific activity of the acetate thiokinase was 5.29 μmol acetate activated min−1 mg−1 protein with a half maximum rate at 0.74 mM acetate and at 0.047 mM CoA. In cell-free extracts a CO-dehydrogenase activity was measured of 3.02 μmol min−1 mg−1 protein with a half maximum rate at 0.44 mM CO and at 0.18 mM methylviologen. NADP and NAD could not replace methylviologen. F420 showed only low activity as electron acceptor.  相似文献   

8.
9.
10.
Methane production by Methanothrix soehngenii VNBF grown on acetate (50 mM) as the sole carbon and energy source was influenced by the addition of Fe, trace elements, and pesticides. The addition of Fe and trace elements significantly enhanced the rate of CH4 production. The addition of pesticides in the early growth phase caused complete inhibition. However, less inhibition was noted when pesticides were added during early exponential growth phase. Addition to culture tubes of Co, Ni, or Mo at 2 μM produced 64, 41, or 17%, respectively, more CH4 than that produced in tubes lacking the corresponding trace element. A concentration of more than 5 μM of these trace elements in the medium resulted in decreased CH4 production, presumably because of toxic effects.  相似文献   

11.
12.
Abstract The methyl-CoM reductase from Methanothrix soehngenii was purified 18-fold to apparent homogeneity with 50% recovery in three steps. The native molecular mass of the enzyme estimated by gel-fitration was 280 kDa. SDS-polyacrylamide gel electrophoresis revealed three protein bands corresponding to M r 63 900, 41 700 and 30 400 Da. The methyl-coenzyme M reductase constitutes up to 10% of the soluble cell protein. The enzyme has K m apparent values of 23 μM and 2 mM for N -7-mercaptoheptanoylthreonine phosphate (HS- HTP = component B ) and methyl-coenzyme M (CH3CoM) respectively. At the optimum pH of 7.0 60 nmol of methane were formed per min per mg protein.  相似文献   

13.
Acetyl-coenzyme A (CoA) synthetase was purified 364-fold from leaves of spinach (Spinacia oleracea L.) using ammonium sulfate fractionation followed by ion exchange, dye-ligand, and gel permeation chromatography. The final specific activity was 2.77 units per milligram protein. The average Mr value of the native enzyme was about 73,000. The Michaelis constants determined for Mg-ATP, acetate, and coenzyme A were 150, 57, and 5 micromolar, respectively. The purified enzyme was sensitive to substrate inhibition by CoA with an apparent Ki for CoA of 700 micromolar. The enzyme was specific for acetate; other short and long chain fatty acids were ineffective as substrates. Several intermediates and end products of fatty acid synthesis were examined as potential inhibitors of acetyl-CoA synthetase activity, but none of the compounds tested significantly inhibited acetyl-CoA synthetase activity in vitro. The properties of the purified enzyme support the postulated role of acetyl-CoA synthetase as a primary source of chloroplast acetyl-CoA.  相似文献   

14.
15.
The kinetics of acetate utilization by concentrated suspensions of cells was examined in five strains of Methanothrix soehngenii. The rate of acetate utilization by all strains was dependent on the initial acetate concentration and followed simple Michaelis-Menten kinetics. The ability to utilize acetate differed among the various strains of M. soehngenii and was highest in the strain designated MTAS.  相似文献   

16.
The kinetics of acetate utilization by concentrated suspensions of cells was examined in five strains of Methanothrix soehngenii. The rate of acetate utilization by all strains was dependent on the initial acetate concentration and followed simple Michaelis-Menten kinetics. The ability to utilize acetate differed among the various strains of M. soehngenii and was highest in the strain designated MTAS.  相似文献   

17.
An enrichment culture which converted acetate to methane at 60°C was obtained from a thermophilic anaerobic bioreactor. The predominant morphotype in the enrichment was a sheathed gas-vacuolated rod with marked resemblence to the mesophile Methanothrix soehngenii. This organism was isolated using vancomycin treatments and serial dilutions and was named Methanothrix sp. strain CALS-1. Strain CALS-1 grew as filaments typically 2–5 cells long, and cultures showed opalescent turbidity rather than macroscopic clumps. The cells were enclosed in a striated subunit-type sheath and there were distinct cross-walls between the cells, similar to M. soehngenii. The gas vesicles in cells were typically 70 nm in diameter and up to 0.5 m long, and were collapsed by pressures over 3 atm (ca. 300 kPa). Stationary-phase cells tended to have a higher vesicle content than did growing cells, and occasionally bands of cells were seen floating at the top of the liquid in stationary-phase cultures. Acetate was the only substrate of those tested which was used for methanogenesis by strain CALS-1, and acetate was decarboxylated by the aceticlastic reaction. The optimum temperature for growth of strain CALS-1 was near 60°C (doubling time=24–26 h), with no growth occurring at 70°C and 37°C. The optimum pH value for growth was near 6.5 in bicarbonate/CO2 buffered medium and no growth occurred at pH 5.5 or pH 8.4. No growth was obtained below pH 7 when the medium was buffered with 20 mM phosphate. Strain CALS-1 grew in a chemically defined medium and required biotin. Sulfide concentrations over 1 mM were inhibitory to the culture, and growth was more rapid with 1 mM 2-mercaptoethane sulfonate (coenzyme M) or 1 mM titanium citrate as an accessory reductant than with 1 mM cysteine. It is likely that strain CALS-1 represents a new species in the genus Methanothrix.  相似文献   

18.
Methylglyoxal synthetase, which catalyzes the conversion of dihydroxyacetone phosphate to methylglyoxal and inorganic phosphate, has been isolated and crystalized in good yields from Proteus vulgaris. The enzyme was shown to be homogeneous by a variety of criteria and was found to be a dimer (Mr = 135,000; s20,w = 7.2 S) composed of two apparently identical catalytic and physical properties and their interconvertible nature suggest that they do not represent true isozymes. The enzyme is specific for dihydroxyacetone phosphate and does not form methylglyoxal from glyceraldehyde 3-phophate, glyceraldehyde, or dihydroxyacetone. Nonphosphorylated analogs are neither substrates nor competive inhibitors, but a variety of phosphorylated analogs are competitive with respect to dihydroxyacetone phosphate. The enzyme is inhibited by inorganic orthophosphate in a complex manner which is overcome by dihydroxyacetone phosphate in a signoidal manner  相似文献   

19.
A new genus of methanogenic bacteria is described, which was isolated from a mesophilic sewage digester. It is most probably the filamentous bacterium, earlier referred to asMethanobacterium soehngenii, fat rod or acetate organism. The single non-motile, non-sporeforming cells are rod-shaped (0.8×2 m) and are normally combined end to end in long filaments, surrounded by a sheath-like structure. The filaments form characteristic bundles.Methanothrix soehngenii decarboxylates acetate, yielding methane and carbon dioxide. Other methanogenic substrates (H2–CO2, formate, methanol, methylamines) are not used for growth or methane formation. Formate is split into hydrogen and carbon dioxide. The temperature optimum for growth and methane formation is 37°C and the optimal pH range is 7.4–7.8. Sulfide and ammonia serve as sulfur and nitrogen source respectively. Oxygen completely inhibits growth and methane formation, but the bacteria do not loose their viability when exposed to high oxygen concentrations. 100 mg/l vancomycin showed no inhibition of growth and methanogenesis. No growth and methane formation was observed in the presence of: 2-bromoethanesulfonic acid, viologen dyes, chloroform, and KCN. The bacterium has a growth yield on acetate of 1.1–1.4 g biomass per mol acetate. The apparent K S of the acetate conversion system to methane and carbon dioxide is 0.7 mmol/l. The DNA base composition is 51.9 mol% guanine plus cytosine. The nameMethanothrix is proposed for this new genus of filamentous methane bacterium. The type species,Methanothrix soehngenii sp. nov., is named in honor of N. L. Söhngen.  相似文献   

20.
W E O'Brien 《Biochemistry》1979,18(24):5353-5356
This communication describes the purification and characterization of argininosuccinate synthetase from human liver. By numerous criteria including electrophoresis in sodium dodecyl sulfate containing gels, electrophoresis in nondissociating gels, and analytical ultracentrifugation, the protein is homogeneous at a specific activity of 4.2 mumol/(min mg) assayed at 37 degrees C in the direction of argininosuccinate synthesis. The enzyme has a molecular weight of 183,000, as determined by gel filtration. Electrophoresis in the presence of sodium dodecyl sulfate yielded a single band migrating with an Rf corresponding to 43,000 daltons. Thus, the enzyme is considered to contain four subunits of identical molecular weight. The s20,w of the enzyme is 8.2 S. Antibodies were prepared in rabbits directed against the purified protein. These antibodies react specifically with argininosuccinate synthetase, as determined by electrophoretic analysis of the immunoadsorbed product from crude extracts of human liver. The human enzyme has very similar properties to those published for the beef and rat liver enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号