首页 | 官方网站   微博 | 高级检索  
     


Allosteric activation mechanism of the alpha1beta2gamma2 gamma-aminobutyric acid type A receptor revealed by mutation of the conserved M2 leucine
Authors:Y Chang and  DS Weiss
Abstract:A conserved leucine residue in the midpoint of the second transmembrane domain (M2) of the ligand-activated ion channel family has been proposed to play an important role in receptor activation. In this study, we assessed the importance of this leucine in the activation of rat alpha1beta2gamma2 GABA receptors expressed in Xenopus laevis oocytes by site-directed mutagenesis and two-electrode voltage clamp. The hydrophobic conserved M2 leucines in alpha1(L263), beta2(L259), and gamma2(L274) subunits were mutated to the hydrophilic amino acid residue serine and coexpressed in all possible combinations with their wild-type and/or mutant counterparts. The mutation in any one subunit decreased the EC(50) and created spontaneous openings that were blocked by picrotoxin and, surprisingly, by the competitive antagonist bicuculline. The magnitudes of the shifts in GABA EC(50) and picrotoxin IC(50) as well as the degree of spontaneous openings were all correlated with the number of subunits carrying the leucine mutation. Simultaneous mutation of the GABA binding site (beta2Y157S; increased the EC(50)) and the conserved M2 leucine (beta2L259S; decreased the EC(50)) produced receptors with the predicted intermediate agonist sensitivity, indicating the two mutations affect binding and gating independently. The results are discussed in light of a proposed allosteric activation mechanism.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号