首页 | 官方网站   微博 | 高级检索  
     


cis sequences involved in modulating expression of Bacillus licheniformis amyL in Bacillus subtilis: effect of sporulation mutations and catabolite repression resistance mutations on expression.
Authors:B M Laoide and  D J McConnell
Affiliation:Department of Genetics, Trinity College, University of Dublin, Ireland.
Abstract:Nutrient conditions which trigger sporulation also activate expression of the Bacillus licheniformis alpha-amylase gene, amyL. Glucose represses both spore formation and expression of amyL. A fusion was constructed between the B. licheniformis alpha-amylase regulatory and 5' upstream sequences (amyRi) and the Escherichia coli lacZ structural gene to identify sequences involved in mediating temporal activation and catabolite repression of the amyL gene in Bacillus subtilis. amyRi-directed expression in a variety of genetic backgrounds and under different growth conditions was investigated. A 108-base-pair sequence containing an inverted repeat sequence, ribosome-binding site, and 26 codons of the structural gene was sufficient to mediate catabolite repression of amyL. spo0 mutations (spo0A, spo0B, spo0E, and spo0H) had no significant effect on temporal activation of the gene fusion when the recipient strains were grown in nonrepressing medium. However, in glucose-grown cultures the presence of a spo0A mutation resulted in more severe repression of amyRi-lacZ. In contrast, a spo0H mutation reduced the repressive effect of glucose on amyRi-lacZ expression. The spo0A effect was relieved by an abrB mutation. Initiation of sporulation is not a prerequisite for either temporal activation or derepression of alpha-amylase synthesis. Mutations causing resistance to catabolite repression in B. subtilis GLU-47, SF33, WLN30, and WLN104 also relieved catabolite repression of amyRi-lacZ.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号