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Abstract Theoretical and computational studies have suggested that the visual cortex processes natural sensory information with
characterized pattern that is termed as "sparse coding", which means that each individual neuron rarely fires intensely (lifetime
sparseness), and meanwhile, only a small subset of neurons within a large population are activated in response to a given instantaneous
stimulus (population sparseness). Temporal and spatial patterns of the chicken retinal ganglion cells忆(RGCs) activities in response to
time-varying natural images (movies) as well as pseudorandom white-noise checker-board flickering sequence (control) were analyzed.
The sparseness indices of the RGCs忆 response over lifetime and across population were calculated, the detailed temporal and spatial
characteristics underlying such sparseness were also investigated. The results show that the lifetime sparseness and the population
sparseness were both more profound for the neuronal responses evoked by natural stimuli as compared to that elicited by checker-board
flickering. Further analysis shows that there were more action potentials fired in "burst" form in response to natural stimuli. Coincident
bursts of adjacent neurons were prevalent in response to both kinds of stimulation, but occurred more frequently during natural movies
stimulation. These results suggest that the RGCs encode natural sensory inputs efficiently. In this scheme, individual neuron fires at a
low rate to save metabolic energy, while dynamically grouped small subsets of neurons are activated with adjacent neurons firing
concertedly to transmit information to the postsynaptic neurons efficiently.
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During the past decades, our knowledge about
visual neural information processing has been built up
essentially based on experiments using simple
laboratory stimuli, such as spots, bars or drifting
sinusoidal gratings [1]. However, the task of the visual
neural system is primarily to process information in
natural environment [2]. According to some theoretical
analyses, it is suggested that the visual system can use
a strategy of "sparse coding" to optimize itself to
match the natural scenes which are inherently "sparse"
in statistical structure [3-5]. In addition to analytical
results obtained from computational and theoretical
studies, there are also lines of evidence provided by
physiological experiments demonstrating that "sparse
representations" are common in the central visual
system [6-8]. In a sparse representation, various patterns
of natural stimuli are encoded by concerted firings of
dynamically grouped small subsets of activated
neurons, such phenomenon is termed as "population
sparseness" [9-10]. However, sparseness can also be

defined in terms of each single neuron忆s firing activity
over time. In a natural environment, a single neuron is
most of the time quiet or fires at a low rate, thus the
terminology "lifetime sparseness" is given [10]. It has
been proposed that high sparseness of the neurons忆
activities in the brain should bear at least two
advantages: lowering neurons忆 metabolic cost by
minimizing the number of active neurons at any
moment [9] and improving coding efficiency with
dynamically activated neuronal subsets[8].

In the present study, the activities of retinal
ganglion cell (RGC) groups in response to digitized
time-varying natural images (video movies) were
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Fig. 1 Example frames
(a) Pseudorandom white-noise checker-board flickering. (b) Grayscale
natural scene movie stimuli.

recorded simultaneously from isolated chicken retinas
using a multi-electrode array (MEA). Pseudorandom
white-noise checker-board flickering sequence was
applied for control experiments. Statistical analyses
performed on our experimental data demonstrate that
sparseness is more remarkable for neuronal activities
in response to natural stimuli as compared to that
elicited by pseudorandom checker-board flickering, in
a sense that both indices, lifetime sparseness and
population sparseness, produce higher values for the
movie-responses. To reveal the specific temporal and
spatial characteristics of the neuronal activities
underlying the "lifetime sparseness" and "population
sparseness", we further identified the firing activities in
"burst" form (densely fired action potentials) in each
neuron忆 s spike train, and analyzed the coincident
bursts across adjacent neurons. The results show that
although the neurons rarely fire at high rate, adjacent
neurons tend to fire "bursts" in coincidence, and this
occurred more frequently during the movie-responses
as compared to the checker-board-responses.

Overall, these results suggest that the RGCs忆
activities are with profound metabolic economy and
high coding efficiency in response to natural stimuli,
thus are optimized to encode the natural stimuli which
they inherently inhabit.

1 Materials and methods
1.1 Electrophysiology recording

The details of the extracellular-recording procedure
have been described in our previous reports [11-12].
Briefly, retinas from chicks (about 1～3 weeks post
hatching) were investigated. Action potentials fired by
ganglion cells were recorded by MEA electrodes (8伊8,
MEA60, MCS GmbH, Germany) using a commercial
multiplexed data acquisition system with a sampling
rate of 20 kHz. Spikes from individual neurons were
sorted using principal component analysis (PCA) [13-14],
as well as the spike-detection and spike-sorting
procedures provided by the commercial software
MC_Rack (Multi Channel Systems MCS GmbH,
Germany) and OfflineSorter (Plexon Inc. Texas, USA).
Only single-neuron events consistently clarified by all
these methods were adopted in further data analyses.
1.2 Visual stimulation

Stimuli were generated using programs written in
VC ++ and DirectX9 (unless otherwise specified),
displayed on a computer monitor (796 FD 域 , MAG)
and projected onto the isolated retina via a lens system.

The following stimulation protocols were applied: (1)
Pseudorandom white-noise checker-board flickering
sequence consisting of 1 920 frames was displayed in a
16伊16 grid. The values of each sub-square of the grid
were determined following an m-sequence(pseudorandom
0-1 sequence, "1" for bright and "0" for dark, with the
intensities chosen as "1"= 20.01 nW/cm2 and "0"=
0.94 nW/cm2 to elicit the neuronal responses to a level
comparable to that evoked by the natural stimuli) [15].
The checker-board frames were refreshed at a rate of
9.05 Hz, with the complete frame sequence lasted
for 221 s. (2) Digitized segments of grayscale video
recording of natural outdoor scenes containing trees,
rocks, streets, houses etc. (download from the website
of van Hateren忆 s lab, http://hlab.phys.rug.nl/vidlib/
index.html [16]) were presented with each piece of
movie containing 1 920 frames (128伊128 pixels), and
with a refresh rate of 10 Hz (lasted for 192 s; the mean
photopic intensity was nearly 2.10 nW/cm2).

Example frames of pseudorandom white-noise
checker-board (CB) and natural movie (NM) are
shown in Figure 1a and 1b. The images were of the
same size while being presented on the screen and
projected onto the retinal piece via an optical lens
system. The projected images covered the whole area
of the multi-electrode array.

1.3 Sparseness measurement
Sparseness measurements were applied to

characterize the firing rate distribution of individual
neurons over time (lifetime sparseness) and the activity
distribution of population neurons忆 response at given
instances (population sparseness). These two aspects
of sparseness can be employed to describe the
temporal and spatial characteristics of the neuronal
activities. Measures of these two indices are inherently
different in despite of similar computational formulae.
In the present study, "kurtosis"———the fourth moment

(a) (b)
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Fig. 2 Identification of burst and coincident events
(a) Sequential spikes (n 逸 2) with inter-spike intervals less than 30 ms
are identified as"burst" . (b) Coincident events (CBB or CSS) are
identified if the time interval between adjacent neurons' activities is less
than 30 ms.

of a distribution, which measures its "peakedness" [10],
was applied to measure the sparseness of the neuronal
activities:

K= 1
n

n

i = 1
移 ri-r軃

滓r
蓘 蓡 4嗓 瑟-3 (1)

For a Gaussian distribution, the K value is close
to zero, while a high positive K value is related to a
heavily-tailed peaky distribution.

When a neuron忆 s firing sequence is divided into
M segments, the firing count in the ith segment can be
denoted as ri (i = 1, 2, ..., M), and the lifetime kurtosis
KL can be described as:

KL = 1
M

M

i = 1
移 ri-r軃

滓r
蓘 蓡 4嗓 瑟 -3 (2)

where r軃and 滓r are the mean value and standard
deviation of the firing counts across the M segments. A
positive KL value reflects lifetime sparseness, with
larger value related to more profound sparseness.

Similar measure can be applied to assess the
population sparseness. When the population contains
N neurons with rj ( j = 1, 2, ..., N) being the firing
count of the jth neuron in a given period, the
population kurtosis KP can be calculated as:

KP= 1
N

N

j = 1
移 rj-r軃

滓r
蓘 蓡 4嗓 瑟-3 (3)

where r軃and 滓r are the mean value and standard
deviation of the firing counts across the N neurons
during the investigated response period. Population
sparseness is represented by a high positive KP value.

In the present study, all the calculations related to
sparseness assessment were performed on the binned
spike trains (bin size = 200 ms) of the RGCs忆 firing
activities in response to the stimulation.
1.4 Coincident firing events across adjacent
neurons

A group of two or more spikes with inter-spike
intervals (ISIs) < 30 ms and preceded by a silent period
longer than 30 ms were identified as a "burst" (as
illustrated in Figure 2a). Burst identification was based
on the spike times at 0.5-ms resolution. Neurons in the
central visual system are sensitive to coincident input
provided by their pre-synaptic neurons [17]. Thus the
coincident firings might be more effective in
information transmission. In the present study, the
coincident firings are defined such that the firing
events (including either burst or single solitary action
potential) occurred between adjacent neurons

(recorded from neighboring electrodes) that overlapped
in time or were separated by a time interval less than
30 ms (Figure 2b). Under such a framework, we
defined coincident burst events (CBB) and coincident
spike events (CSS).

2 Results
2.1 Sparseness of the RGCs忆 responses

Firing activities of an example cell (recorded
from channel #36) out of the 44 neurons whose
activities were simultaneously recorded from a piece
of retina are plotted in Figure 3. Figure 3a and 3b are
the cell忆 s activities in response to the 221-s CB and
192-s NM respectively (each trace represents a period
of 5-s recording). The mean firing rates were 4.11 Hz
and 4.17 Hz in response to CB and NM respectively. It
is clearly shown that the neuron was kept silent or fired
with very low rate most of the time in response to both
stimuli.

Responses of the population RGCs (all the 44
neurons recorded from this retina) in a short time
period (duration = 200 ms) elicited by the CB and NM
are plotted in Figure 3c and 3d. It is shown that 73%
(32 neurons) of the recorded neurons were kept silent,
while others fired at very low rate (< 15 Hz, 3 spikes
within the 200-ms) during this particular period of CB

"Burst"

ISI
(>30 ms)

ISI
(<30 ms)

ISI
(< 30 ms)

ISI
(> 30 ms)
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Fig. 4 The response probability distribution
(a) (b) The distributions of the neuronal activity (#36) in response to CB

and NM are represented by the filled bars (the mirror values are plotted

in the negative side using the hollow bars). The dashed lines represent

the Gaussian distributions which shares the same mean value and

standard deviation with the response distribution. (c) (d) Distributions

(filled bars) of the 44 neurons忆activities in response to the 200-ms CB

and NM segments. The dashed lines reflect the Gaussian distributions

which share the same mean value and standard deviation as the

symmetric distributions.

Fig. 3 Example responses of group RGCs
(a)(b) Raster plots of an example cell忆s (channel #36) responses to CB

and NM respectively(each vertical bar represents one spike, time bin=1 ms,

each trace represents a 5-s period). The asterisks indicate the ends of the

stimuli. (c)(d) Responses of the 44 RGCs during a certain segment(200 ms)

of CB and NM stimulation respectively. Each grid represents the

position of one electrode (60 channels available), and the firing count is
represented by the grayscale (crossed grids are those failed to record any

effective responses).

stimulation. Meanwhile, 68% (30 neurons) were kept
silent, whereas only 7% (3 neurons) fired at high rate
( > 25 Hz, 5 spikes within the 200-ms time period) in
response to NM.

Response probability distributions of the example
cell (channel #36) evoked by the 221-s CB and 192-s
NM are plotted in Figure 4a and 4b respectively (filled
bars, bin size = 200 ms). The mirror values are plotted
in the negative side (blank bars) for each response
probability distribution to make a comparison with a
Gaussian distribution (dashed line) which shares the
same mean value and standard deviation with the
response probability distribution to be analyzed. The
firing probability distribution of the neuronal response
evoked by the CB is with a sharper peak as compared
to the Gaussian distribution, with KL = 3.780. The
sparseness is more profound for the neuronal activity
in response to NM, with KL = 8.857. These results
demonstrate that the null hypothesis that the firing
probability distribution follows a Gaussian distribution
can be rejected for the neuronal responses elicited by
both CB and NM in this neuron. Distributions of firing
counts of the neuron group (44 cells) during a 200-ms

segment (same segment as in Figure 3c and 3d) in
response to CB and NM are shown in Figure 4c and 4d
respectively (filled bars). The mirror values are plotted
in the negative side (blank bars) for each response
distribution to make a comparison with a Gaussian
distribution (dashed line) which shares the same mean
value and standard deviation with the response
distribution to be analyzed. When the CB was applied,
the response distribution of the group neurons忆
activities was with KP= 3.500. The response distribution
was more peaky in exposure to NM (KP= 10.25).

Figure 5a gives the statistical results of all the 44
neurons忆 KL values in response to NM against that in
response to CB and Figure 5b shows the statistical
results of the neuron group忆 s KP values during every
200-ms segment of the NM compared with that of CB.
These results reveal that the group neurons represent
both the CB and NM in a sparse way, but the degree of
the lifetime sparseness and the population sparseness
of the neurons忆 activities evoked by NM is greater
than that evoked by the CB, as indicated by KL and KP

(P < 0.05).
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Fig. 6 Probabilities of burst patterns
and coincident events

(a) PB values of each RGC忆s response during NM against that during CB.

The cross bars indicate the averaged values of PB ( x 依 s). (b) PCBB (black

dots) and PCSS (gray dots) during NM-response against CB-response.

Inset is truncated from the dashed box. The averaged values ( x 依 s) are

indicated by the cross bars.·: PCBB; : PCSS.

Fig. 5 Statistical results for the sparseness indices
(a) Scatter plot of the 44 RGCs忆 lifetime kurtosis (KL , time bin = 200 ms)

of the NM-response against that of the CB-response. The cross error bars

represent the average KL values ( x 依 s) of the CB-responses and the

NM-responses. Inset is truncated from the dashed box. (b) Histogram of

the KP of the group neurons忆 activities in response to the 200-ms

segments of the CB (black bars) and NM (gray bars).

2.2 Coincident firing activities across adjacent
neurons during natural stimuli

From the neuronal firing activities plotted in
Figure 3a and 3b, it is clear that although the neuron
was most of the time quiet, it tended to fire action
potentials in "burst" form———this happened more
frequently in the cell’s NM-response which can be
reflected by the more remarkable lifetime sparseness
of the neurons忆 activities in response to NM (Figure 4b
and Figure 5a). Furthermore, the long tail in Figure 4d
and high population sparseness in Figure 5b also suggest
that the neurons fired more frequently in coincidence
in response to NM. Thus in the present study, the
portion of action potentials fired in burst form (PB) was
calculated for each individual neuron, the probabilities
of coincident events (coincident bursts PCBB and
coincident spikes PCSS ) occurred across adjacent
neurons were also calculated.

In Figure 6a, the dots represent the PB values for
each RGCs recorded from the retina (n =44) during the
CB-response (horizontal axis) and NM-response
(vertical axis), with the cross bars showing the mean
values and the standard errors. The overall PB values
are higher for the neurons忆 NM-response as compare
to the neurons忆 CB-response. PCBB and PCSS values for
each RGC忆 s activity during CB-response (horizontal
axis) and NM-response (vertical axis) are plotted in
Figure 6b (the inset is truncated from the dash box),
with the cross bars indicating the means and the
standard errors. It is clearly demonstrated that for each
individual neuron, the PCBB value is higher than the PCSS

value, and the PCBB value of NM-responses is greater
than that of CB-responses in most of the neurons being
investigated.
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In the present study, neuronal activities were
obtained from four isolated retinas (R1, R2, R3 and
R4) in response to 221-s CB and three different pieces
of natural movie (NM1, NM2 and NM3, each lasted
for 192 s), and the analytical results are consistent
across visual stimulations and retinas (data not shown).
In this paper only the results of population RGCs
recorded from R1 in response to CB and NM1 are
presented as example. These results clearly show that
the RGCs忆 activities in response to NM were more
frequently in burst patterns and such burst patterns
were more likely to occur coincidently among adjacent
neurons. It is the bursts and the coincident bursts that
cause the longer tails of the individual neuron忆 s
response probability distribution and the distribution of
the population neurons忆 instantaneous activities during
NM, which contribute to the high lifetime sparseness
and the population sparseness of the NM-responses.

3 Discussion
3.1 Physiological basis for sparse coding

The structural property of the vertebrate retina is
that the photoreceptors outnumber the RGCs by a
factor of tens or even hundreds, so the visual signal
generated by the photoreceptors is transferred to the
RGCs in a convergent way before it is further
projected to the central visual part in a divergent way.
The optical nerve, which is formed by the axon fibers
of the RGCs, can therefore be the structural
bottle-neck of the whole visual system if the RGCs are
independent channels for information transmission.
Data from multi-electrode recordings have actually
revealed that RGCs can be grouped up in a dynamic
way in response to different stimuli, to ensure the
information transmission [18]. This is to say that even a
single RGC is involved in multiple tasks, and "busy"
activities are expected for the ganglion cells to encode
the visual information properly, while the visual
cortical neurons are highly developed with their
functions highly specified, allowing those cells have
sparse representation of the natural stimuli.

Since the firing activity is energy-consuming and
the dynamic range of effective firing rates is limited, it
has been proposed that the early-stage neurons in
visual system might also encode the natural
stimulation using a strategy of "sparse coding" [19]. In
primates, the visual information encoded by the RGCs
is faithfully sent to the visual cortex through LGN,
whilst the LGN also receives centrifugal inputs from

the superior colliculus and V1 at least in some
species [20]. LGN neurons resemble RGCs in receptive
field and dynamic range, thus suffer from the similar
"bottle-neck" problem. However, it was reported that
the cat LGN neurons忆 responses during both white-
noise stimuli and natural visual stimuli showed the
property of lifetime sparseness, the degree of which
was affected by the contrast as well as the
spatiotemporal correlation of the stimulus [6]. So the
"bottle-neck" structure of the LGN layers does not
necessarily require the LGN neurons be always busy.
Instead, the population neurons may extend their
encoding capacity by firing in dynamic groups, which
leads to the sparse representation of the LGN neurons.
This was also the case for the RGCs investigated in our
present work.
3.2 Properties of the stimuli and the response

The sparseness of the neuronal activities might be
related to several aspects of stimuli properties and the
adaptation strategy of the RGCs in dealing with the
visual stimulation. Intuitively, the spatial and temporal
properties of the stimuli should be determinant to the
spatial and temporal properties of RGC activities. The
contrast of the natural stimuli in a particular part of the
visual field is most of time changing continuously with
only a few sudden and sharp changes, in spite of the
large intensity variation of the natural image streams.
Such temporal and spatial properties of the natural
stimuli often result in intermittent adaptation of
individual RGC忆 s response activity over lifetime and
make the population neurons grouping up dynamically
to fire coincident spikes during the stimuli. However
the lifetime sparseness of the CB-responses was more
likely to be resulted from the overall adaptation in
response to continuous pseudo-random white-noise
checker-board flickering.
3.猿 Temporal and spatial patterns underlying
sparseness and physiological significance

As illustrated in Figure 4, it is clear that the high
value of kurtosis (sparseness) is related to two aspects
of the response distribution, one is the high probability
at/near zero, the other is the long tail of the
distribution, which means that although the neurons
are most of time quiet or fire at low rates, they actually
may fire at high rates and fire coincidently at certain
instants. We therefore took a further step to look into
the detailed response structure underlying the
sparseness.

Physiologically, it is believed that the
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postsynaptic neurons忆 spikes are inherited from the
presynaptic neurons忆 spikes, i.e., an EPSP is necessary
(although not sufficient) for producing a spike in the
postsynaptic neuron. Several studies showed that a
single RGC忆 s sequential spikes with ISI less than
30 ms facilitated the postsynaptic LGN neuron忆s firing
activity [21-22]; coincident spikes of the nearby input
neurons enhanced the firing probability of the target
visual cortical neurons [17]. Therefore, in the present
study, the burst pattern was defined as sequential
spikes with ISI shorter than 30 ms and the coincident
firing events were characterized as firing activities of
adjacent neurons with time difference shorter than
30 ms.

The results show that the single RGCs忆 activities
during natural stimuli occurred more frequently
in burst patterns, which was suggested to be
more efficient to evoke the postsynaptic neurons [22];
furthermore, the burst activities were more often
coincident with adjacent neurons忆 firing events, which
could also facilitate the target neuron忆 activities if the
neurons project to the same post-synaptic neurons.
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视网膜神经节细胞对自然刺激的时空反应模式*

张莹莹 金 鑫 龚海庆 梁培基 **

(上海交通大学生命科学技术学院，上海 200240)

摘要 神经系统信息处理的理论研究和计算结果表明，视皮层可以通过稀疏编码 (sparse coding)模式来处理自然刺激信息．
神经元群体中，单个神经元在大多数时间里没有强的脉冲发放 (时间维稀疏性，lifetime sparseness)，而针对某一刺激，只有
少数神经元在特定的时间内发放 (空间维稀疏性，population sparseness)．从神经元放电的时间和空间模式两个方面考察了视
网膜神经节细胞群体对自然刺激(电影)的编码方式，并同实验室常用的伪随机棋盘格刺激下视网膜的反应模式进行比较，分
析了视网膜神经节细胞反应的稀疏性指标，并深入探讨了其内在的时间和空间特点．结果提示，视觉系统在其最初阶段———

视网膜———即开始采用一种高效节能的稀疏编码方式来处理自然视觉信息，单个神经元的时间维稀疏性节省了代谢能量消

耗，而群体神经元中邻近神经元的动态成组协同发放，提高了信息向突触后神经元传递的有效性．
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