生物工程学报 Chinese Journal of Biotechnology http://journals.im.ac.cn/cjbcn DOI: 10.13345/j.cjb.140046

October 25, 2014, 30(10): 1531-1540 ©2014 Chin J Biotech, All rights reserved

动物及兽医生物技术

BAMBI 通过促进 ERK1/2 磷酸化抑制猪前体脂肪细胞分化

麦茵,张振宇,董培越,杨浩,杨公社,孙世铎

西北农林科技大学 动物脂肪沉积与肌肉发育实验室,陕西 杨凌 712100

麦茵, 张振宇, 董培越, 等. BAMBI 通过促进 ERK1/2 磷酸化抑制猪前体脂肪细胞分化. 生物工程学报, 2014, 30(10): 1531-1540. Mai Y, Zhang ZY, Dong PY, et al. BAMBI inhibits porcine preadipocyte differentiation by facilitating ERK1/2 phosphorylation. Chin J Biotech, 2014, 30(10): 1531-1540.

摘 要: 为了研究 BAMBI 在猪前体脂肪细胞分化过程中的作用,构建了 BAMBI 慢病毒干扰载体,包装并感 染猪前体脂肪细胞,采用油红 O 染色、油红 O 提取比色法检测猪前体脂肪细胞分化情况,采用 Real-time qPCR、 Western blotting 检测成脂标志基因 mRNA 以及蛋白水平表达的变化情况。结果表明,BAMBI 慢病毒干扰载体 感染前体脂肪细胞后显著降低了 BAMBI 的表达,shRNA2 干扰效率最高,达到了 60%以上,干扰 BAMBI 后 能增加猪脂肪细胞的脂质积累,增加了成脂标志基因过氧化物酶体增殖物激活受体 γ (Peroxisome proliferator-activated receptory, PPA R γ) 和脂肪酸结合蛋白 2 (Adipocyte protein 2, ap2) 的表达。此外,干扰 BAMBI 后 ERK1/2 的磷酸化水平减少了。这些结果表明,BAMBI 可能通过促进 ERK1/2 的磷酸化抑制脂肪细 胞分化。

关键词: BAMBI, 慢病毒载体, 猪, 前体脂肪细胞分化, ERK1/2 磷酸化

BAMBI inhibits porcine preadipocyte differentiation by facilitating ERK1/2 phosphorylation

Yin Mai, Zhenyu Zhang, Peiyue Dong, Hao Yang, Gongshe Yang, and Shiduo Sun

Laboratory of Animal Fat Deposition and Muscle Development, Northwest A & F University, Yangling 712100, Shaanxi, China

Abstract: To study the role of BAMBI in adipogenesis, we constructed lentivirus interfering vector targeting on porcine

Corresponding author: Shiduo Sun. Tel: +86-29-87091017; Fax: +86-29-87092120; E-mail: ssdsm@tom.com 高等学校博士学科点专科科研基金 (No.20120204110006),西北农林科技大学创新团队资助。

Received: January 20, 2014; Accepted: June 20, 2014

Supported by: Research Fund for the Doctoral Program of Higher Education of China (No. 20120204110006), the Program for Innovative Research Team in the Northwest A&F University.

BAMBI, packaged and infected the porcine preadipocyte. The differentiation state of preadipocyte was detected by Oil Red O staining and Oil Red O extraction assay and the expression levels of adipogenic marker genes were detected by Real-time qPCR and Werstern bloting. Results show that BAMBI expression was significant decreased after lentivirus infection, which was repressed more than 60% by shRNA2. Moreover, knockdown BAMBI increased the lipid accumulation of porcine preadipocyte and improved the expression of PPAR γ (peroxisome proliferator-activated receptor γ) and ap2 (adipocyte protein 2). In summary, these data indicated that BAMBI inhibited adipocyte differentiation by facilitating the phosphorylation of ERK1/2.

Keywords: BAMBI, lentivirus vectors, porcine, preadipocyte differentiation, ERK1/2 phosphorylation

骨形成蛋白和激活素的跨膜抑制剂 (BMP and Activin receptor Membrane Bound Inhibitor, BAMBI) 于1998年在非洲爪蟾蜍卵母细胞中筛 选与 BMP4 基因表达谱中发现,而在 1999 年 Onichtchouk 等在非洲爪蟾蜍中也发现了一种与 BMP4 表达模式相似的互补 DNA,正式将其命 名为 BAMBI^[1-2]。BAMBI 蛋白质的氨基酸序列 与 nma 有 89%的相似性,因此 BAMBI 也可称为 nma,研究证明 nma 位于人的 10 号染色体 p11.2-p12.3 区域^[3]。而组织差异实验也表明, nma 即 BAMBI 在人肝脏髓质、胎盘以及脾脏中 高表达,在肾脏皮质、肝脏、前列腺和肠中稳 定表达,在肺及肌肉中不表达^[3]。随后在小鼠中 的组织差异表达则表明 BAMBI 在小鼠的心脏、 肺以及睾丸中高表达,在脑、肝脏以及肾脏中 低表达^[4]。

大量的研究证明, BAMBI 在各个组织中广 泛表达,且在脊椎动物中保守表达,因此BAMBI 可能参与机体的多种代谢过程,是一种重要的 功能型蛋白。随着研究的深入,发现 BAMBI 是一种横跨膜糖蛋白,其编码的产物含有 260 个 氨基酸^[1]。BAMBI 的结构与 TGF 超家族的 I 型 受体(TGF-βRI/BMP-RI)的结构相似,其胞外域 与 TGF-βRI/BMP-RI 十分相似,但是其胞内域 与之相比,较短且缺乏丝氨酸/苏氨酸激酶结构 域^[1,4],故其被认为是 TGF-β 信号通路的伪受体。 目前,BAMBI的研究主要集中在肿瘤细胞、胚 胎发育、牙形成以及血管生成方面的作用研 究^[5-7]。最近的研究表明,敲除 BAMBI 后增加 了由 TGF-β 刺激的 SMAD1/5 和 ERK1/2 的磷酸 化进而调控血管生成^[7]。ERK1/2 信号通路在调 控细胞增殖与分化等生理学过程中发挥重要的 作用。研究表明,ERK1/2 在 3T3-L1 细胞脂肪 形成的过程中起负调控的作用^[8-9]。

由以上的研究推测,BAMBI 可能通过 ERK1/2 信号通路脂肪细胞分化。为验证 BMABI 的生物学功能,构建慢病毒干扰载体,感染猪 前体脂肪细胞,探讨其对脂肪细胞分化的影响, 为深入研究其在猪前体脂肪细胞分化过程中调 控机制奠定基础。

1 材料与方法

1.1 材料

1-3 日龄健康关中黑猪。慢病毒载体系统和 293T 细胞系由实验室保存。限制性内切酶 BamHI及XhoI, T4 DNA连接酶, Taq DNA 聚合酶,反转录和 Real-time PCR 试剂盒、Trizol 购于日本 TaKaRa 公司; Opti-MEM、 DMEM, DMEM/F12、I型胶原酶、胎牛血清均购自美国 Gibco公司; 质粒小量提取试剂盒、凝胶回收试 剂盒均购于 BioFlux 公司; Western blotting 所用 抗体均购自 Santa 公司; 其他试剂均为国产或进

口分析纯。

1.2 方法

1.2.1 猪 pLentiH1-BAMBI shRNA 的构建

根据 NCBI 中报道的猪 BAMBI 基因序列 (GenBank Accession No. NM_001201485),利用 Invitrogen 公司在线软件 ranidesigener (https:// rnaidesigner.invitrogen.com/rnaiexpress/) 设计 BAMBI 干扰引物,在中间添加 loop 环和两端添 加 BamH I、 Xho I 酶切位点后,由上海生工生 物工程有限公司合成 3 对 shRNA Oligo DNA 序 列 (表 1)。将合成的单链寡核苷酸退火形成双 链,与经 BamH I 和 Xho I 双酶切后的 pLenti-H1 载体连接,产物转化 DH5α 感受态细胞,挑选 阳性克隆扩繁并提取质粒,酶切鉴定正确后, 送南京金斯瑞公司测序。

1.2.2 病毒包装、浓缩及滴度测定

磷酸钙法转染:转染前 24 h 以 2×10⁴/cm²

表 1 猪 BAMBI 基因 shRNA 设计

Table	1	shRNA	oligo	DNA	targeting	porcine
BAME	BI CE	DS				

BAMBI		Sequence $(5'-3')$
shRNAs		Sequence (5°5)
shRNA1	Sense	GATCCGGTGAAATCAGATGCT
		ACTGTCTCGAGACAGTAGCA
		TCTGATTTCACCTTTTTC
	Antisense	TCGAGAAAAAGGTGAAATCA
		GATGCTACTGTCTCGAGACA
		GTAGCATCTGATTTCACCG
shRNA2	Sense	GATCCGCTGACTTCCTCCAAA
		GAGTTCTCGAGAACTCTTTGG
		AGGAAGTCAGCTTTTTC
	Antisense	TCGAGAAAAAGCTGACTTCC
		TCCAAAGAGTTCTCGAGAAC
		TCTTTGGAGGAAGTCAGCG
shRNA3	Sense	GATCCGCTGTCTGACGTGCGA
		TAAGACTCGAGTCTTATCGCA
		CGTCAGACAGCTTTTTC
	Antisense	TCGAGAAAAAGCTGTCTGAC
		GTGCGATAAGACTCGAGTCTT
		ATCGCACGTCAGACAGCG

密度将 HEK293T 细胞接种到 10 cm 皿中,加 8 mL 含 10% FBS 的 DMEM 培养基,包装前 2-4 h 将培养基更换为 8 mL 新鲜培养基, 10 µg pLentiH1-Akt2 shRNA , 6 μ g VSVG , 6 μ g Δ 8.9 加入高压灭菌的双蒸水中,使总体积为480 uL, 涡旋使混匀;将 520 μL 0.5 mol/L CaCl₂加入质 粒混合物中,涡旋混匀;将 20 μL 70 mmol/L NaH₂PO₄和 980 μL 的 HN 缓冲液混匀为 HNP 缓 冲液,将1000 μL HNP 缓冲液用 200 μL 移液枪 边涡旋边滴加入质粒混合物中;室温静置 15 min 以形成沉淀;用 200 µL 移液枪将混合物滴加入 培养皿中;14-16h后换为新鲜培养基;48h和 72 h 后收集含有病毒的上清液, 3 000 r/min 离 心 10 min, 去除细胞碎片, 0.45 μm 的 PVDF 膜 过滤。按照 10 倍倍比稀释病毒,得到 10^{0} - 10^{-6} 浓度梯度,分别感染 293T 细胞,2 d 后观察荧 光表达情况,计算病毒滴度,计算公式为:病 毒滴度(TU/mL)=GFP 阳性细胞数×病毒稀释倍 数/0.01 mL。

1.2.3 猪前体脂肪细胞培养

无菌状态下采集健康 3 日龄仔猪背部皮下 脂肪组织,用含双抗的 PBS 缓冲液浸泡、冲洗 3次,剪成约1mm³的组织块,向剪碎的组织块 中加入1mg/mLI型胶原酶消化液,置 37℃振 荡摇床内温育 60-80 min 后取出,经 200 目钢筛 过滤、离心、重悬以后,以 5.0×10⁴ 个/cm² 密度 接种至培养皿中,置于 37℃、5% CO₂培养箱内 培养,12h 后更换培养基,之后每 2 d 换液 1 次。

1.2.4 慢病毒感染猪前体脂肪细胞

待 3.5 cm 培养皿中猪前体脂肪细胞融合率 达 70%-80%时,吸去培养皿中培养基,加入 2 mL 病毒原液,200 µL FBS,2 µL 聚凝胺,设 置空白对照,孵育 24 h 后,换为新鲜培养基。

1.2.5 Real-time PCR 分析

猪前体脂肪细胞感染慢病毒 48 h 后观察荧 光强度,收集细胞,PBS 洗 2 次后,加入 1 mL Trizol 试剂,按 TaKaRa 提供的 Trizol 使用说明 书提取细胞总 RNA^[10]。根据 GenBank 中猪 BAMBI、β-actin、PPARγ和 ap2 mRNA 序列, 应用 Primer Primer5.0 设计 PCR 扩增引物,送上 海生工公司合成,引物相关参数见表 2。

1.2.6 Western blotting

猪前体脂肪细胞感染慢病毒 72 h 后观察荧 光强度,收集细胞,用蛋白裂解液提取细胞总 蛋白;猪前体脂肪细胞感染慢病毒 2 d 后,诱导 分化,用含有 1 μmol/L 地塞米松,5 μg/mL 胰 岛素,0.5 μmol/L IBMX (3-异丁基-1-甲基黄嘌呤) 的 DMEM/F12 诱导液诱导 2 d,后用含 5 μg/mL 胰岛素的 DMEM/F12 的维持液培养 4 d 后弃去 培养基,收集细胞,用蛋白裂解液提取细胞总 蛋白,用 BCA 法测定蛋白浓度,调整总蛋白浓 度后,按 1 4 加入 5×上样缓冲液,煮沸 15 min, 用 5%-12%预制胶进行电泳分离,电泳完毕后 电转移到硝酸纤维素膜上,用 5%脱脂牛奶室温 封闭 2 h,一抗孵育 2 h,二抗孵育 2 h,最后用 化学发光法显示结果。

1.2.7 油红 O 染色和油红 O 提取比色法

病毒感染猪前体脂肪细胞后,进行成脂诱

Table 2 Specific primers for Keal-time FCK							
Gene	Accession No.	Primer sequence $(5'-3')$	Length (bp)	T_m (°C)			
BAMBI	NM_001201485	F: AGGACAAGGCAACAGGTATTAGC R: GAACCACAACTCTTTGGAGGAAG	96	60			
β-actin	NM_007393	F: GGACTTCGAGCAGGAGATGG R: AGGAAGGAGGGCTGGAAGAG	138	60			
ΡΡΑRγ	NM_214379	F: AGGACTACCAAAGTGCCATCAAA R: GAGGCTTTATCCCCACAGACAC	142	60			
ap2	HM453202	F: GAGCACCATAACCTTAGATGGA R: AAATTCTGGTAGCCGTGACA	121	60			

表 2 Real-time PCR 特异引物

 Table 2
 Specific primers for Real-time PCR

导分化,6d后吸出培养基,PBS3次,4%多聚 甲醛固定45min,PBS洗3次,油红O工作液 染色45min,PBS洗3次,倒置显微镜下观察 照相。另取一部分细胞按照以上方法固定、染 色、冲洗后,加入2mL异丙醇提取与脂滴结合 的油红O染料,以相同处理为空白对照,在波 长510mm处测量,记录吸光度值(*OD*)。

1.2.8 数据统计分析

实验数据以平均值±标准误(x±s)表示, 采用 SPSS19.0 统计分析软件 One-way ANOVA 进行方差分析与显著性检验。

2 结果

2.1 pLentiH1-BAMBI shRNA 构建与包装

将合成的 3 对 shRNA Oligo DNA 退火后, 电泳可见一条单一的,大小为 59 bp 的条带 (图 1A)。随后,对 pLentiH1 空载质粒进行酶切,酶 切后电泳可见 2 个片段,大片段为 7 612 bp,小 片段为 209 bp (图 1B),说明酶切成功,可用于 后续实验。胶回收大片段产物,与退火产物进 行连接,转化 DH5α,涂板后挑取阳性克隆,摇 菌,提质粒,用 BamH I 和 Xho I 双酶切重组质 粒 pLentiH1-BAMBI shRNA 得到长度为 59 bp 的片段 (图 1C),后送公司测序验证,测序结果 正确,载体构建成功。 2.2 慢病毒的包装及感染猪前体脂肪细胞

将慢病毒重组质粒、包装质粒 Δ8.9 和包装 质粒 VSVG 共转染 293T 细胞,分别于 24、48 和 72 h 在倒置荧光显微镜下观察绿色荧光蛋白 (GFP) 表达情况。结果显示,48 h 后细胞生长 良好,已经有 90%以上细胞表达绿色荧光蛋白, 表明包装成功 (图 2)。同时,在48、72 h收集 病毒上清液。待猪前体脂肪细胞细胞融合率达 到 70%-80%时,用病毒上清液感染猪前体脂肪 细胞,48 h 后荧光显微镜下观察,可见 50%以 上的细胞发绿色荧光 (图 3),表明慢病毒已经整 合到细胞基因组,并开始表达 GFP 和干扰片段。

图 1 BAMBI 慢病毒载体的构建

Fig. 1 Construction of BAMBI lentivirus vectors. (A) shRNA Oligo DNA was annealed to double-stranded DNA. M: DNA marker; 1–3: BAMBI shRNA1, 2 and 3 Oligo DNA annealing product (58 bp). (B) pLentiH1 blank plasmids was identified by restriction enzyme digestion *Bam*H I and *Xho* I). M1: DNA marker 1; 1–5: enzyme digestion product by *Bam*H I and *Xho* I ; M2: DNA marker 2; (C) pLentiH1-BAMBI shRNA recombinant plasmids were identified by restriction enzyme digestion (*Bam*H I and *Xho* I). M: DNA marker; sh1–sh3: enzyme digestion product of pLentiH1-BAMBI shRNA1, 2 and 3.

图 2 BAMBI 重组慢病毒的产生

Fig. 2 Production of BAMBI recombinant lentivirus. (A, E) Transfected with pLentiH1-BAMBI shRNA1. (B, F) Transfected with pLentiH1-BAMBI shRNA2. (C, G) Transfected with pLentiH1-BAMBI shRNA2. (D, J) Transfected with pLentiH1 scrambled. (A, B, C, D) Examined under amicroscope ($40\times$). (E, F, G, H) Examined under amicroscope ($100\times$).

2.3 慢病毒感染猪前体脂肪细胞后对 BAMBI 基因表达的影响

用 pLentiH1-BAMBI shRNA1、2、3 以及 scrambled 慢病毒感染猪前体脂肪细胞,48 h 和 72 h 后分别收集 RNA 和蛋白,采用 real-time PCR 检测干扰片段对 BAMBI 基因的干扰效率,其中 shRNA2 的干扰效率达到 60%,高于 50%,达到 预期效果,可用于后续实验(图 4A),将其重新命 名为 sh-BAMBI。Western blotting 检测结果也显示, 感染了 shRNA2 的猪前体脂肪细胞,BAMBI 蛋白 表达显著降低(图 4B)。结果表明,构建的慢病毒 能够有效抑制猪前体细胞中 BAMBI 的表达。

图 3 重组慢病毒感染猪前体脂肪细胞 2 d 后 GFP 表达

Fig. 3 GFP expression in porcine preadipocytes infected with lentivirus 2 days later $(100\times)$. (A–C) Porcine preadipocyte infected by lentivirus containing BAMBI shRNA1, 2 and 3. (D) Porcine preadipocyte infected by lentivirus containing scrambled, as control.

图 4 重组慢病毒感染猪前体脂肪细胞后 BAMBI 的 mRNA 及蛋白水平的表达

Fig. 4 Expression of BAMBI mRNA and protein in porcine preadipocytes infected with lentiviru. (A) Real-time PCR analysis BAMBI and β -actin mRNA expression in porcine preadipocytes infected by lentivirus including BAMBI and scrambled shRNA. Noinfected and scrambled as controls, β -actin as internal control. (B) Western blotting analysis of BAMBI and β -actin protein expression in porcine preadipocytes infected by lentivirus including BAMBI and scrambled shRNA. Noinfected and scrambled as controls, β -actin as internal control. (B) Western blotting analysis of BAMBI and β -actin protein expression in porcine preadipocytes infected by lentivirus including BAMBI and scrambled shRNA. Noinfected and scrambled as controls, β -actin as internal control. **P < 0.01; ***P < 0.001.

2.4 干扰 BAMBI 后促进猪前体脂肪细胞分化 慢病毒病毒感染猪前体脂肪细胞,进行诱 导分化,6d后进行油红 O 染色及提取,同时, 提取细胞总 RNA,利用 Real-time PCR 检测细 胞中过氧化物酶体增殖物激活受体 γ (PPARγ)、 和脂肪细胞型脂肪酸结合蛋白 (ap2) mRNA 表 达情况。油红 O 染色结果表明, BAMBI 干扰后 细胞中的脂滴量明显增加 (图 5A)。油红 O 提取 比色法结果也显示,降低 BAMBI 的表达促进了 猪前体脂肪细胞脂质累积 (图 5B)。Real-time PCR 检测结果则表明,BAMBI 干扰处理组与对 照组相比 PPARγ 和 ap2 mRNA 表达显著升高, 其中 PPARγ 水平上调约 2.2 倍,ap2 水平上调约 2.1 倍 (图 6A)。蛋白水平的检测表明,干扰 BAMBI

图 5 BAMBI 干扰对猪前体脂肪细胞分化的影响

Fig. 5 Effects of interference of BAMBI on pig preadipocyte differentiation. (A) Oil red O staining of porcine preadipocytes at day 6 after differentiation (100×). After infected by lentivirus preadipocytes were induced for 6 days to differentiate by cocktail way. a, b and c: adipocytes before staining; d, e and f: adipocytes by oil red O staining. a and d: adipocytes not be infected lentivirus; b and e: adipocytes infected by lentivirus includingnonsense shRNA; c and f: adipocytes infected by lentivirus including BAMBI shRNA2. (B) Quantitative analysis of the Oil Red O staining, the accumulation of lipid droplets in shRNA2 treated group was increased. **P<0.01.

Fig. 6 Effect of PPAR γ , ap2 and ERK1/2 signaling pathway in porcine preadipocytes lacking BAMBI. Preadipocytes were infected with lentivirus and induced for 6 days by cocktail way. Total RNAs were collected 6 days later. The expression levels of PPAR γ and ap2 were measured by real-time PCR and Western blotting, the activity of ERK1/2 was detected by Western blotting. Results were normalized by β -actin. (A) The mRNA levels of PPAR γ and ap2. (B) The protein expression of PPAR γ , ap2 and ERK1/2 signaling pathway. **P*<0.05, ***P*<0.01. Noninfected: adipocytes did not be infected by lentivirus; scrambled: infected by lentivirus including scrambled shRNA; sh-BAMBI: adipocytes infected by lentivirus including BAMBI shRNA2; p-ERK1/2: the phosphorylation level of ERK1/2.

后 PPARγ和 ap2的蛋白水平升高了,此外,磷酸化的 ERK1/2 水平降低了 (图 6B)。因此, BAMBI 可能通过 ERK1/2 信号通路抑制猪前体 脂肪细胞分化。

3 讨论

肥胖是机体内脂肪细胞数目和大小的增加 导致脂肪组织过度积累造成的,它成为 21 世纪 人类生存危机之一^[11]。肥胖更容易引发 型糖 尿病、高血压、高血脂、动脉硬化等疾病,因 此,了解脂肪沉积的调控机制成为近年来的热 点问题^[12]。大量研究表明,脂肪形成过程受到 一个复杂的网络调控。本研究发现 BAMBI 可能 是一个新的调节脂肪细胞分化的因子。

近年来, BAMBI 作为 TGF-β 超家族的伪受 体,在肿瘤细胞中有大量的研究。研究发现, 在结肠癌细胞中过表达 BAMBI 阻断了癌细胞 对 TGF-β 信号通路的反应^[13]。人的 BAMBI 基 因 (hBAMBI) 可以抑制 TGF-β 和 BMP 介导的 转录应答以及 TGF- β 诱导的 R-Smads 磷酸化, hBAMBI 还可以通过与 Smad7、ALK5 形成三元 复合物抑制了 ALK5 和 R-Smads 的相互作用从 而抑制 TGF-β 信号通路^[14]。Sekiya 等^[15]证明, TGF-β信号通路中的 Smad3 和 Smad4 与 BAMBI 的启动子相结合,从而使得 TGF-B 信号通路调 节 BAMBI 的转录。而最近的研究则发现,作为 伪受体的 BAMBI 在血管形成过程中通过 TGF-β 信号通路调节 ERK1/2 的磷酸化水平发挥作 用^[7]。研究显示, ERK1/2 信号通路在脂肪细胞 分化过程中发挥关键的作用^[16]。在分化的早期 阶段抑制 ERK1/2 信号通路可以抑制脂肪的形 成^[17]。虽然有研究认为 ERK1/2 信号通路促进了 脂肪细胞分化^[18]。但是,许多的研究也表明 ERK1/2 信号通路在脂肪形成过程中发挥负调控 作用。MacDougald 等发现,持续的激活 ERK1/2 信号通路可以抑制脂肪细胞分化^[19]。ERK1/2 信 号通路是通过增加 PPARγ 的磷酸化水平,从而 抑制其活性,进而抑制脂肪形成^[16,20]。此外, Zang 等发现 Brd2 增加 ERK1/2 的磷酸化水平, 进而增加了 PPARγ 的磷酸化水平,导致 PPARγ 的降解,最后抑制脂质沉积^[21]。因此,我们推 测 BAMBI 可能通过调控 ERK1/2 的活性调控脂 肪形成。

本研究采用了慢病毒介导的 RNA 干扰,该 方法可应用于难以干扰的细胞,并且在感染后 能与宿主细胞基因整合,实现长期的稳定表 达^[22]。此外,使用磷酸钙法对慢病毒干扰载体 进行包装,与脂质体法相比,前者可达到后者 的转染效率,并且不需更换无双抗培养基,降 低了细胞污染的概率,此外,还节约了实验的 成本^[23]。而为了进一步保证慢病毒的侵染效率, 在侵染时慢病毒中混入了 0.1%的 polybrene。实 验中,成功构建了猪 BAMBI 干扰载体,研究结 果表明,构建的BAMBI慢病毒干扰载体可有效 的干扰 BMABI 的 mRNA 和蛋白的表达。为进 一步研究 BAMBI 对脂肪细胞分化的作用机理 奠定了基础。此外,以猪前体脂肪细胞作为研 究材料,一方面可以为 BAMBI 调控猪脂肪沉 积,进而影响胴体品质提供思路;另一方面, 猪在生理特性与脂肪沉积的调控机理有很高的 相似性^[24],是合适的动物模型,可为治疗肥胖 及其相关疾病提供新的靶点。

通过油红 O 染色及油红 O 提取比色法检测 发现,BAMBI 慢病毒干扰载体干扰 BAMBI 表 达后,猪前体脂肪细胞中的脂质积累增加了, 说明抑制 BAMBI 的表达能够促进猪前体脂肪 细胞分化。PPARγ和 ap2 分别在启动前体脂肪 细胞分化与脂肪细胞成熟阶段发挥重要的作 用,因此,它们作为脂肪细胞分化的标志基 因^[25-26]。为了进一步确定干扰 BAMBI 后对猪脂 肪形成的影响,我们通过实时定量 PCR 检测了 PPARγ和 ap2 的表达情况,检测结果表明,干 扰 BAMBI 后,PPARγ和 ap2 的表达水平显著上 升。此外,我们发现干扰 BAMBI 后,ERK1/2 的磷酸化水平降低了,即 ERK1/2 的活性降低 了。因此,*BAMBI* 基因可能通过促进 ERK1/2 的活性抑制猪前体脂肪细胞分化。但是,BAMBI 是否是通过提高 ERK1/2 的活性,进而降解抑制 PPARγ 的活性,从而调控脂肪形成还需要进一 步的研究。

综上所述,本研究成功构建了猪 BAMBI 慢病毒干扰载体,获得高感染力的病毒并成功 感染猪前体脂肪细胞,有效地抑制了 BAMBI 的表达。BAMBI 沉默通过抑制 ERK1/2 的活性 促进了猪前体脂肪细胞分化,表明 BAMBI 通过 ERK1/2 信号通路对猪前体脂肪细胞分化起负调 控的作用。这些结果都为进一步研究 BAMBI 调控脂肪细胞分化的作用机理提供了理论 依据。

REFERENCES

- Onichtchouk D, Chen YG, Dosch R, et al. Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature, 1999, 401(6752): 480–485.
- [2] Gawantka V, Pollet N, Delius H, et al. Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech Dev, 1998, 77(2): 95–141.
- [3] Degen WG, Weterman MA, van Groningen JJ, et al. Expression of nma, a novel gene, inversely

correlates with the metastatic potential of human melanoma cell lines and xenografts. Int J Cancer, 1996, 65(4): 460–465.

- [4] Knight C, Simmons D, Gu TT, et al. Cloning, characterization, and tissue expression pattern of mouse Nma/BAMBI during odontogenesis. J Dent Res, 2001, 80(10): 1895–1902.
- [5] Fritzmann J, Morkel M, Besser D, et al. A colorectal cancer expression profile that includes transforming growth factor beta inhibitor BAMBI predicts metastatic potential. Gastroenterology, 2009, 137(1): 165–175.
- [6] Pils D, Wittinger M, Petz M, et al. BAMBI is overexpressed in ovarian cancer and co-translocates with Smads into the nucleus upon TGF-beta treatment. Gynecol Oncol, 2010, 117(2): 189–197.
- [7] Guillot N, Kollins D, Gilbert V, et al. BAMBI regulates angiogenesis and endothelial homeostasis through modulation of alternative TGF β signaling. PLoS ONE, 2012, 7(6): e39406.
- [8] Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev, 2011, 75(1): 50–83.
- [9] Engelman JA, Berg AH, Lewis RY, et al. Constitutively active mitogen-activated protein kinase kinase 6 (MKK6) or salicylate induces spontaneous 3T3-L1 adipogenesis. J Biol Chem, 1999, 274(50): 35630–35638.
- [10] Zhou J, Chen KM, Ge BF, et al. Proliferation and differentiation of rat bone marrow mesenchymal stem cells in static electromagnetic fields of different intensities *in vitro*. Chin J Biochem Mol Biol, 2011, 27(7): 650–657 (in Chinese).
 周健,陈克明,葛宝丰,等.不同强度静电磁场 对体外培养骨髓间充质干细胞增殖与分化的影响.中国生物化学与分子生物学报, 2011, 27(7): 650–657.
- [11] Kersten S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep, 2001, 2(4): 282–286.
- [12] Nakagami H. The mechanism of white and brown

adipocyte differentiation. Diabetes Metab J, 2013, 37: 85-90.

- [13] Sekiya T, Adachi S, Kohu K, et al. Identification of BMP and activin membrane-bound inhibitor (BAMBI), an inhibitor of transforming growth factor-beta signaling, as a target of the beta-catenin pathway in colorectal tumor cells. J Biol Chem, 2004, 279(8): 6840–6846.
- [14] Yan X, Lin Z, Chen F, et al. Human BAMBI cooperates with Smad7 to inhibit transforming growth factor-beta signaling. J Biol Chem, 2009, 284(44): 30097–30104.
- [15] Sekiya T, Oda T, Matsuura K, et al. Transcriptional regulation of the TGF-beta pseudoreceptor BAMBI by TGF-beta signaling. Biochem Biophys Res Commun, 2004, 320(3): 680–684.
- [16] Hu E, Kim JB, Sarraf P, et al. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science, 1996, 274(5295): 2100–2103.
- [17] Tang QQ, Otto TC, Lane MD. Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci USA, 2003, 100(1): 44–49.
- [18] Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol, 2006, 7: 885–896.
- [19] MacDougald OA, Mandrup S. Adipogenesis: forces that tip the scales. Trends Endocrinol Metab, 2002, 13(1): 5–11.

- [20] Adams M, Reginato MJ, Shao D, et al. Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogenactivated protein kinase site. J Biol Chem, 1997, 272(8): 5128–5132.
- [21] Zang K, Wang J, Dong M, et al. Brd2 inhibits adipogenesis via the ERK1/2 signaling pathway in 3T3-L1 adipocytes. PLoS ONE, 2013, 8(10): e78536.
- [22] Cockrell AS, Kafri T. Gene delivery by lentivirus vectors. Mol Biotechnol, 2007, 36(3): 184–204.
- [23] Wang P, Xiong Y, Yang GS, et al. Knockdown of Akt2 by lentivirus vector-mediated RNA interference suppresses differentiation of porcine preadipocytes. Chin J Biochem Mol Biol, 2012, 28(1): 53-60 (in Chinese).
 王平, 熊燕, 杨公社, 等. 慢病毒载体介导的 RNA 干扰 Akt2 表达抑制猪前体脂肪细胞分化.
 中国生物化学与分子生物学报, 2012, 28(1): 53-60.
- [24] Belliger DA, Merrichks EP, Nichols TC. Swine models of type 2 diabetes mellitus: insulin resistance, glucose tolerance, and cardiovascular complications. ILAR J, 2006, 47: 243–245.
- [25] Sarjeant K, Stephens JM. Adipogenesis. Cold Spring Harb Perspect Biol, 2012, 4(9): a008417.
- [26] Furuhashi M, Tuncman G, Görgün CZ, et al. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature, 2007, 447(7147): 959–965.

(本文责编 郝丽芳)