

微生物学涌报

Microbiology China

双台子河口沉积物中细菌多样性分析

郭建丽^{1,2} 樊景凤^{1*} 付慧¹ 明红霞¹ 袁秀堂¹ 王斌²

(1. 国家海洋环境监测中心 辽宁 大连 116023)

(2. 大连海洋大学 辽宁 大连 116023)

摘 要: 【目的】掌握双台子河口沉积物中细菌多样性及其群落结构的季节变化特征。 【方法】于 2009 年 4 月、7 月、10 月和 12 月共 4 个航次在内陆河流入海口处进行四季 样品的采集,采用 PCR-DGGE 技术对沉积物中细菌多样性进行分析。【结果】通过序列比 对发现,该处沉积物中的细菌主要归属于 5 个细菌类群,分别为变形菌门(52.6%)、放线菌 门(15.8%)、拟杆菌门(10.5%)、酸杆菌门(5.3%)以及绿弯菌门(5.3%),此外还有一部分分类 地位尚不明确的细菌(10.5%)。在四季样品中变形菌门(52.6%)为优势菌群,而在变形菌门 中,δ亚群又占绝对优势地位。实验结果还显示四季沉积物中细菌 Shannon-Wiener 多样性 指数范围为 1.84-2.79, 且春夏两季沉积物中的 Shannon-Wiener 多样性指数比秋冬两季沉 积物中 Shannon-Wiener 多样性指数大。【结论】双台子河口沉积物中细菌多样性符合典 型河口沉积物中细菌多样性的特征;低温能导致沉积物中细菌多样性的减少。这为初步掌 握双台子河口沉积物中细菌种类和组成状况提供了一定的参考,同时也为该处海洋环境 的监测及生物资源的保护提供了科学依据。

关键词:双台子河口,细菌多样性,PCR-DGGE

基金项目:海洋公益性行业科研专项项目(No. 200805069)

^{*}通讯作者: Tel: 86-411-84782826; ⊠: jffan@nmemc.gov.cn 收稿日期: 2012-11-13; 接受日期: 2013-01-30

Analysis of the bacterial diversity in the sediments of Shuang Taizi estuary

GUO Jian-Li^{1,2} FAN Jing-Feng^{1*} FU Hui¹ MING Hong-Xia¹ YUAN Xiu-Tang¹ WANG Bin²

(1. National Marine Environmental Monitoring Center, Dalian, Liaoning 116023, China)
 (2. Dalian Ocean University, Dalian, Liaoning 116023, China)

Abstract: [Objective] The aim of this study was to analyze the seasonal characteristics of bacterial diversity and community structure in sediments of the Shuang Taizi estuary. [Methods] Four seasonal samples, sitting in Shuang Taizi estuary, were collected in April, July, October and December, 2009, respectively. PCR-DGGE method was employed to analysis the bacterial diversity. [Results] By sequening, the bacteria in sediments of Shuang Taizi estuary fell into five known phyla, which were Proteobacteria (52.6%), Actinobacteria (15.8%), Bacteroidetes (10.5%), Acidobacteria (5.3%) and Chloroflexi (5.3%). Besides, a part of unidentified bacteria (10.5%) was detected. The Proteobacteria (52.6%) were dominant species, in which the δ -Proteobacteria gained the uppermost position. In addition, the results also indicated that the values of Shannon-Wiener index for bacterial community structure ranged from 1.84 to 2.79, the values of Shannon-Wiener index in spring and summer were higher than that of in autumn and winter. [Conclusion] The bacterial diversity in the sediments of Shuang Taizi estuary was in accordance with the bacterial diversity characteristics of the typical estuarine. Low-temperature can lead to a loss of the microbial diversity. This work presented a certain reference for the preliminary understanding of the bacterial species and composition in this estuary. At the same time, it provided a scientific evidence for monitoring of the marine environment, as well as preserving of the biological resources in this area.

Keywords: Shuang Taizi estuary, Bacterial diversity, PCR-DGGE

双台子河口地处辽河入海口处,是国家级自 然保护区,同时也是陆地水入海前的天然蓄水 库。该处不但沉积了大量的营养物质和悬浮物, 还具有很强的泄洪与净化能力,为生物的生长繁 殖提供了良好的生态环境,该地区蕴含的生物多 样性资源闻名于世界^[1]。但近年来,由于水域环 境污染不断加剧,加之长期以来对水资源的持续 高强度开发利用,双台子河口生物资源和水域环 境遭到严重破坏,生物物种减少,海洋生物种群 缩减,若失去区域内的生物多样性,双台子河口 自然保护区将失去其存在的意义。因此,这一问 题引起了许多科学家的关注。

到目前为止,对于双台子河口的研究主要集 中在水环境中的水质指标(水温、透明度、酸碱度、 溶解氧、盐度、叶绿素等)、海洋生物(浮游植物、 浮游动物、底栖生物等)的种类和丰度测定及重金 属(如镉)污染^[2]等方面。虽然通过这些数据我们对 该河口污染情况有了一定的了解,但相对于水介 质来讲,海洋沉积物更是多种污染和有毒物质的 最终储存地^[3]。然而目前对于该处沉积物的研究主 要集中在硫化物、有机碳等化学物质的污染上[1]. 并没有对其微生物这一重要的生物类群进行分 析. 而微生物的群落结构蕴含着大量的环境信 息,不但有利于了解其生境特点,而且还有助于 对其生态系统环境状况进行全面评价。因此,本 文采用变性梯度凝胶电泳法,通过对16S rRNA 基因 V3区序列克隆测序,构建系统发育树,对双 台子河口沉积物中的细菌种类和组成进行研究。 以期为认识该区域的微生物多样性提供基础参 考价值,同时也为该处海洋环境的监测及生物资 源的保护提供科学依据。

材料与方法 1

1.1 样品采集

分别于 2009 年春季(4 月)、夏季(7 月)、秋季 (10月)和冬季(12月)分四个航次无菌采集双台子 河口表层沉积物样品,站位布设在盘锦市境内的 双台子河入海口处的 S1 (121°9.825'E, 40°50.933'N) S2 (121°8.754'E, 40°48.954'N) S3 (121°5.792′E, 40°45.347′N)站点, 详见图 1。采 用抓斗式采泥器(0.05 m²)进行采样,采样水深:

采样站位图 图 1

Fig. 1 Map of sampling site

S1:5 m, S2:9 m, S3:12 m。采样过程中使用的所 有器具都经过了严格的消毒,采集的样品迅速 放入无菌保鲜袋中, 冷藏保存, 24 h 内运回实验 室处理。

1.2 沉积物样品总 DNA 的提取和纯化

称量5g沉积物样品于50mL离心管中、然 后加入5mL提取缓冲液 [其成分为100 mmol/L, Tris-HCl (pH 8.0), 100 mmol/L EDTA (pH 8.0), 1% CATB (W/V), 100 mmol/L Na₃PO₄ (pH 8.0), 1.5 mol/L NaCl^[4]], 50 µL 蛋白酶 K (20 mg/L), 在 37°C、200 r/min 振荡 30 min 后,加入 0.5 mL 20% 的 SDS, 65 ℃ 水浴加热 30 min (期间轻轻混匀一 次)、然后-80 ℃ 冰冻 30 min、如此反复 3 次。将 上述样品处理液以 8 000 r/min 离心 15 min, 收集 上清液,加入等体积的酚:氯仿:异戊醇(25:24:1, V/V/V), 混匀后 15 000 r/min 离心 15 min, 收集上 清液,然后加入等体积的氯仿:异戊醇(24:1, V/V), 混匀后 15 000 r/min 离心 15 min, 收集上清液, 向 收集的上清中加入0.6倍体积的异丙醇,4℃放置 30 min 后 12 000 r/min 离心 10 min, 弃上清液, 然 后用 70%冰乙醇清洗 2 次, 无菌风吹干, 用 100 µL TE 缓冲液溶解沉淀,得到总 DNA 的粗 提液,参照大连宝生物生物技术公司生产的 DNA 凝胶回收试剂盒的说明书进行切胶纯化, 然后用 1% (W/V)琼脂糖凝胶电泳检测。

1.3 巢式 PCR 扩增

为提高反应的灵敏度和特异性,本研究采用 巢式 PCR 扩增 16S rRNA 基因 V3 区, 再进行 DGGE分析。采用细菌 16S rDNA 的通用引物 27 F 和 1492 R^[5],反应条件为: 94 °C 5 min; 94 °C 30 s, 52 °C 30 s, 72 °C 1 min, 共 35 个循环; 72 °C 10 min。扩增产物用 1.5% (W/V)的琼脂糖凝胶电 泳检测。

对 V3 区扩增采用的是特异性引物 GC-F341 和 R518^[6],反应条件参照文献[6]。扩增产物用 2% (W/V)的琼脂糖凝胶电泳检测,分析后直接用于 DGGE 分析。

1.4 变性梯度凝胶电泳(DGGE)

根据变性梯度凝胶电泳装置(DcodeTM Universal Mutation Detection System, Bio-Rad, USA) 说明书对其 PCR 产物进行凝胶电泳分析。所用 的聚丙烯酰胺变性梯度胶浓度为 8%,变性梯度 为30%-60%,温度为60°C,在1×TAE缓冲液中 以 200 V 电压电泳 5 h,完毕后将凝胶在 Genefinder 中染色 30 min,随即用凝胶成像分析 系统(Kodak Gel Logic 2200)照相。在可见光凝胶 透射仪上进行 DNA 条带的切割,切下的 DNA 条 带放入 2 mL离心管中,加入 1 mL去离子水冲洗 2-3 次后,加入 30 μL无菌去离子水,然后将其作 为模板,采用无发夹结构的 F341 和 R518 引物进 行 PCR 扩增,反应条件同 1.3。

1.5 DGGE 图谱细菌多样性指数分析

DGGE 图 谱 通 过 香 浓 指 数 *H* (Shan-non-Wiener index)对细菌多样性进行评价:

 $H = -\sum (n_i / N) \ln(n_i / N)_{\circ}$

其中, n_i 是每条泳道每条条带的平均光密度 值, N 为每条泳道所有条带的平均光密度总值。

1.6 克隆和测序

将 PCR 回收产物与 pMDl8-T vector (TaKaRa) 在 14 °C-16 °C 连接 3 h, 然后转化到 *E. coli* DH5α 感受态细胞, 用蓝白斑筛选法挑取阳性克 隆子, 进行质粒抽提, 1.5%琼脂糖凝胶电泳检测 插入片段大小, 并送往生工生物有限公司(上海) 测序。测序引物序列分别为 M13-47: 5'-CGCCAG GGTTTTCCCAGTCACGAC-3'; RV-M: 5'-GAGC GGATAACAATTTCACACAGG-3'。

1.7 系统发育树的构建

首先将得到的序列在 NCBI 数据库中检测嵌 合体, 然后把去除嵌合体后的剩余序列进行比 对, 将所得高同源序列和原序列用 ClustalX 1.8 程序进行多序列匹配排列,采用 MEGA 3.1 程序中 Neighbor-Joining 方法、Kimura 双参数计算模型构建系统发育树。

2 结果与分析

2.1 总 DNA 的提取和 PCR 扩增

电泳检测结果显示, 沉积物中总菌的 DNA 大小集中在 23 kb 左右。通过细菌特异性引物进 行 PCR 扩增, 得到 16S rRNA 基因的全长以及 V3 区序列, 其片段大小分别为 1 460 bp 和 220 bp, 扩增所产生的 DNA 片段均为单一条带, 且阴性 对照无污染, 表明扩增效果良好。

2.2 DGGE 指纹图谱分析

由图 2 可以看出, 沉积物中细菌 16S rRNA 基因的 V3 区特征片段经 DGGE 分离得到数目不 等、亮度不同的电泳条带, 从而鉴别出不同样品 中细菌多样性及各样品之间群落结构的差异, 这些分离得到的条带均表示样品中的优势种群。 条带越多说明细菌多样性越丰富, 条带信号越 亮, 表明该种属的数量越多。从图 2 来看, S1、 S2 和 S3 站位的优势种群在春季(4 月份)的条带 最多(平均条带数为 17 条), 说明春季细菌多样 性最丰富; 夏季(7 月份)的条带最亮, 说明夏季 的优势种群数量最多; 而在秋季(10 月份, 平均 条带数为 10 条)和冬季(12 月份, 平均条带数为 9 条)的条带数量相对少一些, 各站位 4 个季节样 品的具体条带数见表 1。

2.3 细菌 16S rDNA 序列分析

从 S1、S2、S3 站位四季的 DGGE 分离条带 中选取了 19 条主条带进行切胶回收,并对其进 行了克隆测序。将测序得到的序列与 GenBank 数 据库中的已知序列进行比对,比对结果见表 2。 由表 2 可知,这些序列与数据库中的已知序列具 有较高的相似性。由构建的系统发育树(图 3)来 看,获得的 19 条序列归属于 5 个细菌类群,包括 变形菌门(Proteobacteria, 52.6%)、放线菌 (Actinobacteria, 15.8%)、拟杆菌门(Bacteroidetes, 10.5%)、酸杆菌门(Acidobacteria, 5.3%)以及绿弯 菌门(Chloroflexi, 5.3%), 此外还有一部分分类地 位尚不明确的细菌(10.5%)。由此可见,变形菌门 为优势菌, 而变形菌门又涵盖了 α 、 β 、 γ 、 δ 四个 亚群, 其中 δ-Proteobacteria 为优势类群(60%), 其 次为γ-Proteobacteria (20%), β和α亚群各占10%。

А В С D Е F G Н I J K L

> 图 2 DGGE 指纹图谱 Fig. 2 DGGE fingerprint

注: A、B、C 分别为春季 S1、S2、S3 站位样品; D、E、F 分别为夏季 S1、S2、S3 站位样品; G、H、I 分别为秋季 S1、S2、 S3 站位样品; J、K、L 分别为冬季 S1、S2、S3 站位样品.

Note: A, B, C: The samples collected from the sites of S1, S2 and S3 in spring, respectively; D, E, F: The samples collected from the sites of S1, S2 and S3 in summer, respectively; G, H, I: The samples collected from the sites of S1, S2, S3 in autumn, respectively; J, K, L: The samples collected from the sites of S1, S2, S3 in winter, respectively.

表 1 DGGE 指纹图谱中各站位的电泳条带数 Table 1 The number of the electrophoretic bands of each site in the DGGE fingerprint						
站位	采样时间 Time					
Sites	春季 Spring	夏季 Summer	秋季 Autumn	冬季 Winter		
S1	17	16	8	9		
S2	18	18	10	9		
S3	15	13	12	10		

	表 2 DGGE 条带的 16S rRNA 基因的序列比对结果 Table 2 Analysis of 16S rRNA gene of DGGE bands	
条带号	最相似的序列及其登录号	相似度
Band number	Closest relative and its accession number	Sequence similarity (%)
1	Algibacter lectus strain p13 16S ribosomal RNA gene (JQ661172.1)	99
2	Uncultured bacterium clone SHFH766 (FJ203660.1)	98
3	Mesoflavibacter sp. N71 (HQ188626.1)	98
4	Desulfobulbaceae bacterium PR6_E07 (HE600828.1)	96
5	Uncultured delta proteobacterium clone NdAmb140 (FJ753051.1)	100
6	Uncultured delta proteobacterium clone B02CT_ControlDay15 (GQ243062.1)	100
7	Uncultured gamma proteobacterium clone DH132B27 (JN672649.1)	99
8	Uncultured Chloroflexi bacterium clone w-E2 (HQ727099.1)	98
9	Delftia sp. L2128 (JQ419620.1)	99
10	Uncultured bacterium clone HS004 16S ribosomal RNA gene (JX391340.1)	99
11	Uncultured Desulfobacteraceae bacterium clone 2C83 (FM211789.1)	99
12	Uncultured delta proteobacterium clone B09CT_ControlD9 (GQ243146.1)	100
13	Uncultured delta proteobacterium clone ARTE12_283 (GU230399.1)	97
14	Uncultured actinobacterium clone B50 (GU826531.1)	99
15	Uncultured gamma proteobacterium clone B05_RAMPDAY15 (GQ242683.1)	99
16	Uncultured actinobacterium clone pfact27 (HQ877756.1)	96
17	Rhodovulum sp. JA545 (FN995216.1)	98
18	Uncultured Acidobacteriaceae bacterium clone JdFBGBact (DQ070820.1)	98
19	Uncultured actinobacterium clone C0112_INITIAL (GQ242383.1)	98

2.4 DGGE 图谱细菌多样性指数分析

根据每条条带的平均光密度值计算得到各样 品的细菌多样性指数,详见表 3。由表 3 可以看 出,除秋季和冬季的 S1 站位外,3 个站位均是春 夏两季的沉积物细菌多样性指数大于秋冬两季 的沉积物细菌多样性指数,说明春夏两季沉积物 中细菌多样性比秋冬两季丰富,低温(具体采样 温度详见表 4)减小了沉积物中细菌多样性。

3 讨论

通过对双台子河口沉积物中细菌多样性的分析发现,其 Shannon-Wiener 多样性指数范围为 1.84-2.79,这与杜萍等和郑艳玲研究的椒江口沉 积物^[7]和长江口沉积物^[8]中细菌的 ShannonWiener 指数范围(1.68-2.87 和 1.43-2.89)的结论 一致。说明双台子河口沉积物中细菌的多样性符 合典型河口沉积物遗传多样性的特征。但与姜丽 晶研究的珠江口沉积物^[9] (Shannon-Wiener 指数 为 4.6)的结论相差很大。这可能与珠江口独具特 色的地貌发育模式有关,珠江口三角洲由多个河 口三角洲组合而成,其地貌发育史以河口放射状 汊道为基本特征,而双台子河口被典型的半封闭 海湾辽东湾所包围,因此两者沉积物中细菌多样 性存在差异是合乎情理的。本研究中双台子河口 四季沉积物中细菌多样性的总体分布趋势为春 夏两季比秋冬两季丰富,说明低温在一定程度上 导致了细菌多样性的减少。这与李友训等^[3]对胶 州湾和东太平洋海隆沉积物细菌多样性的研究

图 3 DGGE 主条带 16S rDNA 克隆系统发育树

Fig. 3 Phylogenetic tree of 16S rDNA clones of major DGGE bands

Note: Numbers at each branch points presented the percentage supported by bootstrap based on Neighbor-Joining analyses of 1 000 replicates. The GenBank accession number was shown in parentheses. Bar: 0.02 sequence divergence.

表 3 不同样品中的细菌群落 Shannon-Wiener 多样性指数 Table 3 The values of Shannon-Wiener index for bacterial community in different samples						
站位 Sites	春季 Spring	夏季 Summer	秋季 Autumn	冬季 Winter		
S1	2.49	2.29	1.84	2.08		
S2	2.79	2.50	2.07	1.84		
83	2.58	2.42	2.22	2.04		

表 4 采样品时的海水温度 Table 4 The temperature of the seawater at the sampling time (°C)							
站位 Sites	春季 Spring	夏季 Summer	秋季 Autumn	冬季 Winter			
S1	10.19	26.96	1.03	-0.26			
S2	10.22	26.12	1.88	1.32			
S3	10.35	26.01	5.35	1.89			

结果一致。然而在本研究中,虽然 S1 站位的秋季 温度比冬季高,但细菌的多样性指数却比冬季 小,分析可能是 S1 站位离河口最近,其沉积物中 的细菌多样性更易受到陆源排污的影响,该站位 在冬季可能受到了人类、动物活动或污水排放等 因素的影响。

分析沉积物中的微生物群落结构,有助于 了解该地区的生态环境状况。通过对双台子河口 沉积物中细菌种类鉴别发现,该处沉积物中存 在功能菌和环境污染指示菌。图 2 中的 1 号条带 所代表的菌种属于黄杆菌科(Flavobacteriaceae) Algibacter 属,已有研究显示 Algibacter 菌株能 产出显著水平的类胡萝卜素,特别是高纯度的 玉米黄质^[10]; 通过与 NCBI 数据库比对发现, 本 实验中获得的 3 号拟杆菌序列与朝鲜东海沉积 物^[11]中的细菌序列相似度最高(98%), 而这株菌 来源于人类粪便,因此推测本研究采样地点可能 受到了陆源排污或其他人类活动的影响; 18 号条 带所代表的菌种属于酸杆菌门(Acidobacteria), 该类菌群是基于分子生态学研究划分出的新细 菌类群。有研究表明, 酸杆菌易生活在金属污染 区域等酸性较强的环境中^[12],此外,此类菌群 多发现于陆地环境,如土壤中^[13],因此推断该 地区的河口沉积物受陆源影响较大,且水质发 生了较大的变化;而14、16、19号条带所代表 的菌种属于放线菌门(Actinobacteria), 该类菌群 是一大类有益次级代谢产物的生产者。据报道, 目前所使用的抗生素中,70%是由放线菌产生 的。通过比对发现,本实验中获得的14号和16

号条带所代表的菌株分别与海洋中的石海绵和 棕色扁海绵共生[14-15],虽然有很多的文献中都 提到了海绵放线菌和其相关产物,但国际上有 关海绵放线菌分离方面的研究还处于起步水平。 而 19 号条带所代表的菌株与来自重金属污染的 海洋沉积物^[16]中获得的放线菌相似度最高。由 此我们推断, 双台子河口沉积物可能受到了重 金属的污染,并且这一推断在刘玉令等[1]的研究 中得到了验证。在本研究中,优势种群变形菌门 中的 δ-Proteobacteria 占了绝对优势(60%),这一 结论与邹扬等^[17]对白令海北部表层沉积物中细 菌多样性的研究结果相同。通过序列比对发现, 本实验中获得的 δ -Proteobacteria 序列与来源于 受重金属和石油烃污染的突尼斯海峡沉积物[19] 的细菌序列的相似度最高。由 DGGE 图谱可知, 该类菌群四季均可出现, 但多出现于夏季 (50%)。这提示我们,双台子河口生态系统可能 受到了重金属或石油烃等因素的影响,且夏季 比较严重。该地区除了存在与污染相关的细菌之 外,还有一些与生物地球化学循环相关的功能 菌群。γ-Proteobacteria 是仅次于 δ-Proteobacteria 的第二类优势菌群。Freitag 等^[20]在研究海洋沉 积物厌氧条件下氨代谢情况时发现, γ-Proteobacteria 在厌氧氨氧化过程中起着重要 作用。因此该沉积物中γ-Proteobacteria的存在可 能与沉积物的碳、氮循环密切相关。17 号条带 所代表的菌为红杆菌科(Rhodobacteraceae)小红 卵菌属(Rhodovulum), 该类菌群的最佳生长方式 是利用各种有机化合物进行光合异养生长,并 且在有高浓度硫化氢存在时仍可生长,是一种 硫氧化细菌^[21]。本研究中检测到了该类菌群,说 明该海域中可能存在着大量的有机物。相比之 下,β-Proteobacteria 更易存活于受污染的环境 中^[22]。如白洁等研究表明,β-Proteobacteria 细菌 可作为环境质量监测与评价的生态指标^[23]。

本研究为初步掌握双台子河口沉积物中细 菌种类和组成状况提供一定的参考,也为该处 海洋环境的监测及生物资源保护提供科学的依 据。但我们在采集沉积物样品时没有进行分层采 集,徐宏翔等研究结果显示,表层沉积物所含微 生物的种类因深度不同而有所变化^[24],因此, 在此基础上,今后再分层对沉积物微生物多样 性进行研究,以便更准确地描述当地微生物实 际状况。此外还应对除温度之外的其他环境因子 (如总氮、总磷、重金属等)也进行分析,从而更 好地解释和验证我们的结论。

4 结论

(1)该处沉积物中的细菌主要归属于五个细菌类群,分别为变形菌门(52.6%)、放线菌门(15.8%)、拟杆菌门(10.5%)、酸杆菌门(5.3%)以及绿弯菌门(5.3%),此外还有一部分分类地位尚不明确的细菌(10.5%)。在四季样品中变形菌门(52.6%)为优势菌群,而在变形菌门中,δ亚群又占绝对优势地位。

(2) 双台子河口沉积物中的细菌多样性符合 典型河口沉积物中细菌多样性的特征。

(3) 除 S1 站位外, 春夏两季沉积物中细菌多 样性比秋冬两季的细菌多样性丰富, 说明低温会 导致沉积物中细菌多样性的减少。

参考文献

[1] 刘玉令. 双台子河口海域生态环境状况与生态系

统评价研究[D]. 大连: 大连海事大学硕士学位论 文, 2011.

- [2] 孙书涵, 王冬艳, 胡克, 等. 双台子河口区水中 重金属污染评价及其生态效应分析[J]. 世界地质, 2007, 26(1): 75-79.
- [3] 李友训.对胶州湾和东太平洋海隆(-13°N)沉积 物微生物多样性的研究[D].青岛:中国科学院研 究生院博士学位论文,2008.
- [4] Zeng RY, Zhang R, Zhao J, et al. Bacterial community in sediment from the western Pacific "warm pool" and its relationship to environment[J]. Science in China Series D: Earth Sciences, 2005, 48(2): 282–290.
- [5] Chong CW, Annie TY, Richard CW, et al. DGGE fingerprinting of bacteria in soils from eight ecologically different sites around Casey Station Antarctica[J]. Polar Biology, 2009, 32(6): 853–860.
- [6] Watanabe T, Asakawa S, Nakamura A, et al. DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil[J]. FEMS Microbiology Letters, 2004, 232(2): 153–163.
- [7] 杜萍,刘晶晶,沈李东,等. Biolog 和 PCR-DGGE 技术解析椒江口沉积物微生物多样 性[J].环境科学学报,2012,32(6):1436-1444.
- [8] 郑艳玲,侯立军,陆敏,等.崇明东滩夏冬季表
 层沉积物细菌多样性研究[J].中国环境科学, 2012,32(2):300-310.
- [9] 姜丽晶.珠江口沉积物微生物多样性及其与环境 相互关系的研究[D]. 厦门:国家海洋局第三海洋 研究所硕士学位论文,2007.
- [10] 艾克沃制药生物发明有限公司.玉米黄质的生物
 生产和类胡萝卜素的生物合成控制:英国, CN200680015466.2[P]. 2008-06-18. http://dbpub. cnki.net.
- [11] Cho BC, Hwang CY. Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea)[J]. FEMS Microbiology Ecology, 2011, 76(2): 327–341.
- [12] Barns SM, Cain EC, Sommerville L, et al.

Acidobacteria phylum sequences in uraniumcontaminated subsurface sediments greatly expand the known diversity within the phylum[J]. Applied and Environment Microbiology, 2007, 73(9): 3113–3116.

- [13] 王春香,田宝玉,吕睿瑞,等.西双版纳地区热带雨林土壤酸杆菌(Acidobacteria)群体结构和多样性分析[J]. 微生物学通报,2010,37(1):24-29.
- [14] Brück WM, Reed JK, Mccarthy PJ. The bacterial community of the lithistid sponge *Discodermia* spp. as determined by cultivation and cultureindependent methods[J]. Marine Biotechnology (New York, N.Y.), 2012, 14(6): 762–773.
- [15] Han M, Liu F, Zhang F, et al. Bacterial and archaeal symbionts in the South China Sea sponge *Phakellia fusca*: community structure, relative abundance, and ammonia-oxidizing populations[J]. Marine Biotechnology (New York, N.Y.), 2012, 14(6): 701-713.
- [16] Gillan DC, Pernet P. Adherent bacteria in heavy metal contaminated marine sediments[J]. Biofouling, 2007, 23(1/2): 1–13.
- [17] 邹扬,曾胤新,田蕴,等.白令海北部表层沉积物中细菌多样性的研究[J].极地研究,2009, 21(1):15-24.
- [18] 李涛, 王鹏, 汪品先. 南海西沙海槽表层沉积物 微生物多样性[J]. 生态学报, 2008, 28(3):

1166-1173.

- [19] Ben Said O, Goñi-Urriza M, El Bour M, et al. Bacterial community structure of sediments of the bizerte lagoon (Tunisia), a southern Mediterranean coastal anthropized lagoon[J]. Microbial Ecology, 2010, 59(3): 445–456.
- [20] Freitag TE, Prosser JI. Community structure of ammonia-oxidizing bacteria within anoxic Marine sediments[J]. Applied and Environment Microbiology, 2003, 69(3): 1359–1371.
- [21] Li S, Xiao X, Yin X, et al. Bacterial community along a historic lake sediment core of Ardley Island, West Antarctica[J]. Extremophiles: Life Under Extreme Conditions, 2006, 10(5): 461–467.
- [22] Brummer IM, Felske A, Wagner DI. Diversity and seasonal variability of β-proteobacteria in biofilms of polluted rivers:analysis by temperature gradient gel electrophoresis and cloning[J]. Applied and Environment Microbiology, 2003, 69(8): 4463–4473.
- [23] 白洁,李海艳,张健,等.黄海西北部沉积物中 细菌群落16S rDNA 多样性解析[J].中国环境科 学,2009,29(12):1277-1284.
- [24] 徐宏翔, 吴敏, 王小谷, 等. 东北太平洋深海沉积物细菌多样性[J]. 生态学报, 2008, 28(2): 479-485.