首页 | 官方网站   微博 | 高级检索  
     


Photosynthetic and Respiratory Activity of Fruiting Forms within the Cotton Canopy
Authors:Wullschleger S D  Oosterhuis D M
Affiliation:Altheimer Laboratory, Department of Agronomy, University of Arkansas, Fayetteville, Arkansas 72701.
Abstract:The supply of photosynthates by leaves for reproductive development in cotton (Gossypium hirsutum L.) has been extensively studied. However, the contribution of assimilates derived from the fruiting forms themselves is inconclusive. Field experiments were conducted to document the photosynthetic and respiratory activity of cotton leaves, bracts, and capsule walls from anthesis to fruit maturity. Bracts achieved peak photosynthetic rates of 2.1 micromoles per square meter per second compared with 16.5 micromoles per square meter per second for the subtending leaf. However, unlike the subtending leaf, the bracts did not show a dramatic decline in photosynthesis with increased age, nor was their photosynthesis as sensitive as leaves to low light and water-deficit stress. The capsule wall was only a minor site of 14CO2 fixation from the ambient atmosphere. Dark respiration by the developing fruit averaged −18.7 micromoles per square meter per second for 6 days after anthesis and declined to −2.7 micromoles per square meter per second after 40 days. Respiratory loss of CO2 was maximal at −158 micromoles CO2 per fruit per hour at 20 days anthesis. Diurnal patterns of dark respiration for the fruit were age dependent and closely correlated with stomatal conductance of the capsule wall. Stomata on the capsule wall of young fruit were functional, but lost this capacity with increasing age. Labeled 14CO2 injected into the fruit interior was rapidly assimilated by the capsule wall in the light but not in the dark, while fiber and seed together fixed significant amounts of 14CO2 in both the light and dark. These data suggest that cotton fruiting forms, although sites of significant respiratory CO2 loss, do serve a vital role in the recycling of internal CO2 and therein, function as important sources of assimilate for reproductive development.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号