首页 | 官方网站   微博 | 高级检索  
     


Aerobic biodegradation of biphenyl and polychlorinated biphenyls by Arctic soil microorganisms.
Authors:W W Mohn  K Westerberg  W R Cullen  and K J Reimer
Abstract:We examined the degradation of biphenyl and the commercial polychlorinated biphenyl (PCB) mixture Aroclor 1221 by indigenous Arctic soil microorganisms to assess both the response of the soil microflora to PCB pollution and the potential of the microflora for bioremediation. In soil slurries, Arctic soil microflora and temperate-soil microflora had similar potentials to mineralize 14C]biphenyl. Mineralization began sooner and was more extensive in slurries of PCB-contaminated Arctic soils than in slurries of uncontaminated Arctic soils. The maximum mineralization rates at 30 and 7 degrees C were typically 1.2 to 1.4 and 0.52 to 1.0 mg of biphenyl g of dry soil-1 day-1, respectively. Slurries of PCB-contaminated Arctic soils degraded Aroclor 1221 more extensively at 30 degrees C (71 to 76% removal) than at 7 degrees C (14 to 40% removal). We isolated from Arctic soils organisms that were capable of psychrotolerant (growing at 7 to 30 degrees C) or psychrophilic (growing at 7 to 15 degrees C) growth on biphenyl. Two psychrotolerant isolates extensively degraded Aroclor 1221 at 7 degrees C (54 to 60% removal). The soil microflora and psychrotolerant isolates degraded all mono-, most di-, and some trichlorobiphenyl congeners. The results suggest that PCB pollution selected for biphenyl-mineralizing microorganisms in Arctic soils. While low temperatures severely limited Aroclor 1221 removal in slurries of Arctic soils, results with pure cultures suggest that more effective PCB biodegradation is possible under appropriate conditions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号