首页 | 官方网站   微博 | 高级检索  
     


Regional patterns of increasing Swiss needle cast impacts on Douglas‐fir growth with warming temperatures
Authors:E Henry Lee  Peter A Beedlow  Ronald S Waschmann  David T Tingey  Steven Cline  Michael Bollman  Charlotte Wickham  Cailie Carlile
Affiliation:1. U.S. Environmental Protection Agency, Corvallis, OR, USA;2. Department of Statistics, Oregon State University, Corvallis, OR, USA;3. Missouri Department of Natural Resources, Jefferson City, MO, USA
Abstract:The fungal pathogen, Phaeocryptopus gaeumannii, causing Swiss needle cast (SNC) occurs wherever Douglas‐fir is found but disease damage is believed to be limited in the U.S. Pacific Northwest (PNW) to the Coast Range of Oregon and Washington (Hansen et al., Plant Disease, 2000, 84, 773; Rosso & Hansen, Phytopathology, 2003, 93, 790; Shaw, et al., Journal of Forestry, 2011, 109, 109). However, knowledge remains limited on the history and spatial distribution of SNC impacts in the PNW. We reconstructed the history of SNC impacts on mature Douglas‐fir trees based on tree‐ring width chronologies from western Oregon. Our findings show that SNC impacts on growth occur wherever Douglas‐fir is found and is not limited to the coastal fog zone. The spatiotemporal patterns of growth impact from SNC disease were synchronous across the region, displayed periodicities of 12–40 years, and strongly correlated with winter and summer temperatures and summer precipitation. The primary climatic factor limiting pathogen dynamics varied spatially by location, topography, and elevation. SNC impacts were least severe in the first half of the 20th century when climatic conditions during the warm phase of the Pacific Decadal Oscillation (1924–1945) were less conducive to pathogen development. At low‐ to mid‐elevations, SNC impacts were most severe in 1984–1986 following several decades of warmer winters and cooler, wetter summers including a high summer precipitation anomaly in 1983. At high elevations on the west slope of the Cascade Range, SNC impacts peaked several years later and were the greatest in the 1990s, a period of warmer winter temperatures. Climate change is predicted to result in warmer winters and will likely continue to increase SNC severity at higher elevations, north along the coast from northern Oregon to British Columbia, and inland where low winter temperatures currently limit growth of the pathogen. Our findings indicate that SNC may become a significant forest health problem in areas of the PNW beyond the coastal fog zone.
Keywords:climate change  dendroecology  forest diseases     Phaeocryptopus gaeumannii        Pseudotsuga menziesii   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号