首页 | 官方网站   微博 | 高级检索  
     

林木根呼吸及测定方法进展
引用本文:杨玉盛,董彬,谢锦升,陈光水,李灵,刘东霞,李震.林木根呼吸及测定方法进展[J].植物生态学报,2004,28(3):426-0.
作者姓名:杨玉盛  董彬  谢锦升  陈光水  李灵  刘东霞  李震
作者单位:1. 福建师范大学地理科学学院,福州,350007;福建农林大学林学院,福建南平,353001
2. 福建农林大学林学院,福建南平,353001
基金项目:教育部优秀青年教师资助计划,福建省科研项目,国家自然科学基金
摘    要: 森林土壤呼吸的近2/3是由林木根呼吸产生的,林木根呼吸对估计森林C吸存及构建森林生态系统碳动态模型有重要意义,是全球碳循环研究的一个重要组成部分。林木根呼吸包括生长呼吸和维持呼吸,不同森林生态系统林木根呼吸对土壤呼吸的贡献大多在40%~60%范围内,林木根呼吸在生长季节较高而休眠季节较低。测定林木根呼吸的主要方法有排除根法、离体根法、同位素法和原位PVC管气室法,前两者相对简单、成本低,常用于森林生态系统中;同位素法可原位测定根呼吸,对土壤干扰较小,但不易操作,且成本高。根呼吸受土壤温度、根直径大小、根组织N浓度、环境CO2浓度、土壤湿度、养分有效性等因素的影响。今后的研究应集中在以下方面:1)探讨和比较不同条件下测定根呼吸组成(生长呼吸、维持呼吸)的最合适方法;2)加大在野外条件下使用有效方法分离根呼吸和根际微生物呼吸的力度;3)对森林生态系统根呼吸动态进行长期的定位研究;4)进一步加强研究不同气候带,不同森林类型林木根呼吸,并将研究尺度从气室扩大到区域或全球水平;5)加强林木根呼吸对全球变化的响应及机制的研究;6)对林木根呼吸进行多学科合作研究将为全球C循环做出新的贡献。

关 键 词:林木根呼吸  影响因素  测定方法  全球变化
修稿时间:2003年5月16日

A REVIEW OF TREE ROOT RESPIRATION:SIGNIFICANCE AND METHODOLOGIES
YANG Yu-Sheng , DONG Bin XIE Jin-Sheng CHEN Guang-Shui , LI Ling LIU Dong-Xia and LI Zhen.A REVIEW OF TREE ROOT RESPIRATION:SIGNIFICANCE AND METHODOLOGIES[J].Acta Phytoecologica Sinica,2004,28(3):426-0.
Authors:YANG Yu-Sheng  DONG Bin XIE Jin-Sheng CHEN Guang-Shui  LI Ling LIU Dong-Xia and LI Zhen
Affiliation:YANG Yu-Sheng 1,2 DONG Bin 2 XIE Jin-Sheng 2 CHEN Guang-Shui 1,2 LI Ling 2 LIU Dong-Xia 2 and LI Zhen 2
Abstract:Tree root respiration is a major contributor to soil CO2 pools, and 2/3 of total forest soil respiration is from root respiration. Information about root respiration is important for understanding the implications of environmental change on soil carbon cycling and carbon sequestration, and for the development of carbon models of forest ecosystem dynamics. Furthermore, the global CO2 flux from root respiration is estimated to be about 18 Pg C·a-1, which is an order of magnitude larger than that produced by anthropogenic sources of CO2. Therefore, changes in forest tree root respiration could have a significant impact on the future global carbon balance. Ecological research on tree root respiration is relatively recent and still very little research on this topic has been conducted in China. In this paper, We review the characteristics, methodologies and factors affecting tree root respiration for the purpose of stimulating new, domestic research on this topic. Tree root respiration is composed of maintenance respiration and growth respiration. Maintenance respiration, the dominant component of total of total root respiration, is used to maintain the living biomass, and growth respiration, which is used to construct new biomass, is proportional to the amount of new dry matter synthesized. Root respiration rates vary significantly among forest types. The proportion of the total soil carbon flux that is attributable to live root respiration appears to be very high in cold, northern biomes, ranging from 50% to 93% in the arctic tundra and from 62% to 89% in boreal forests. In temperate zones, estimated proportions of the total soil respiration flux that is derived from live root respiration range from 33% to 50% in broad-leaved forests and from 35% to 62% in pine forests. Root respiration typically is 40%-60% of total soil respiration in most forests. Tree root respiration has significant seasonal dynamics with respiration greatest during the growing season and lowest during the dormant periods of the year. . Methods used to measure tree root respiration include root exclusion methods, in vitro root techniques, stable or radioactive isotope methods and in situ cuvette methods. Each approach has advantages and disadvantages. The first two methods are relatively simple and inexpensive and are commonly used in forest ecosystems. Isotope based methods provide quantitative answers with the least amount of disturbance to the soil and roots, but the complexity of the experimental setup and the high costs associated with the analysis of radioactive or stable C isotopes are major disadvantages. The in situ cuvette method is considered an important method for future studies. Critical factors influencing rates of tree root respiration include soil temperature, root diameter size, ambient CO2 concentration, soil moisture, and nutrient availability. . Despite intensive research in recent years, many uncertainties remain in this dynamic and important field of research. Topics of particular importance include: 1) Discussion and comparison of the appropriate methods for accurately measuring tree root respiration; 2) Application of effective methods for separating root respiration and rhizosphere respiration in the field; 3) Long-term research on the dynamics of tree root respiration in forest ecosystems; 4) Studies of tree root respiration in different ecosystems and climatic zones; 5) How to scale up from small chambers to the stand level, ecosystem level, regional or global level; 6) Understanding the mechanistic response of tree root respiration to global climate change; and, 7) Inter-disciplinary research on tree root respiration to understand its role in the global carbon cycle.
Keywords:Tree root respiration  Methodologies  Global climate change  C cycle  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《植物生态学报》浏览原始摘要信息
点击此处可从《植物生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号