DOI: 10.11931/guihaia.gxzw202104046

史卫东. 利用 F-MSAP 分析菜心表观遗传多样性 [J]. 广西植物, 2022, 42(8): 1357-1366。 SHI WD. Epigenetic diversity of Chinese flowering cabbage revealed by F-MSAP [J]. Guihaia, 2022, 42(8): 1357-1366.

利用 F-MSAP 分析菜心表观遗传多样性

史卫东*

(广西壮族自治区农业科学院蔬菜研究所,南宁 530007)

摘 要: 菜心杂交除了引起 DNA 序列变化,还可能引起不依赖于 DNA 序列的表观遗传变化,为揭示菜心表观遗传多样性形成机理,该文利用 F-MSAP 检测 49 份菜心的 DNA 甲基化水平和模式变化。结果表明:(1) F-MSAP 检测效率较高,菜心 DNA 甲基化多态性较高,杂交可以提高 DNA 甲基化多态性。(2)菜心表观遗传多样性较低,均质化严重,大部分遗传变异来源于种内,自交增加自交系的表观遗传差异,杂交增加杂种的表观遗传差异。(3)49 份菜心的 DNA 甲基化水平较高,以全甲基化模式为主,自交降低 DNA 甲基化水平,杂交通过 DNA 甲基化模式变化增加自交系杂种的 DNA 甲基化水平。(4)49 份菜心分成五类,聚类分析和主成分分析结果基本一致,杂种倾向于按照母本亲缘关系分类。该研究利用 F-MSAP 检测菜心表观遗传多样性,提高了菜心的鉴定效率和准确性,为进一步开展杂交育种提供了理论基础和技术支持。

关键词:菜心,自交,杂交,表观遗传多样性,F-MSAP, DNA 甲基化

中图分类号: Q943 文献标识码: A 文章编号: 1000-3142(2022)08-1357-10

Epigenetic diversity of Chinese flowering cabbage revealed by F-MSAP

SHI Weidong*

(Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China)

Abstract: In addition to DNA sequence changes, the hybridization Chinese flowering cabbage may also cause epigenetic changes that are independent of DNA sequence. In order to reveal the formation mechanism of epigenetic diversity in Chinese flowering cabbage, the changes on the level and pattern of DNA methylation of 49 Chinese flowering cabbages were tested by F-MSAP. The results were as follows: (1) The detection efficiency of F-MSAP was high, the DNA methylation polymorphism of Chinese flowering cabbage was high, and hybridization could improve the DNA methylation polymorphism. (2) The epigenetic diversity of cabbages was low, the homogenization was serious, and most of the genetic variation was originated from within the species. Selfing increased the epigenetic differences between inbred

收稿日期: 2022-03-17

基金项目: 国家自然科学基金(31360481); 广西农业科学院基本科研业务专项(2015YT71,2021YT108) [Supported by National Natural Science Foundation of China (31360481); Basic Research Project of Guangxi Academy of Agricultural Sciences (2015YT71, 2021YT108)]。

第一作者: 史卫东(1969-),博士,研究员,主要从事蔬菜遗传育种及分子生物学研究工作,(E-mail)shiwdd800@126.com。

parents, hybridization increased the epigenetic difference of hybrids. (3) The DNA methylation level of 49 Chinese flowering cabbages was relatively high, the pattern was mainly full methylation. Selfing decreased the DNA methylation level, and hybridization increased the DNA methylation level of inbred hybrids through the change of DNA methylation pattern. (4) The 49 Chinese flowering cabbages were divided into five categories. The results of cluster analysis and principal component analysis were basically consistent. Hybrids tended to be classified according to female parent genetic relationship. This study improves the identification efficiency and accuracy through the analysis of epigenetic diversity of Chinese flowering cabbage, and provides theoretical basis and technical support for further cross-breeding.

Key words: Chinese flowering cabbage, selfing, hybridization, epigenetic diversity, F-MSAP, DNA methylation

菜心是起源于中国南方的十字花科蔬菜,复 种指数高,种植面积大,品种繁多。菜心种质资源 狭窄,开展种质创新及鉴定对品种选育很重要。 目前,基因组分子标记广泛应用于菜心遗传多样 性分析, ISSR、SCoT 和 AFLP 分析表明菜心遗传多 样性较低(孙雪梅等,2010;Shi et al., 2011;史卫 东等,2015),AFLP和SCoT分析表明菜心遗传变 异主要来源于种内(Shi et al., 2011; 史卫东等, 2015)。菜心分子标记分类与传统分类的一致性 和差异性并存,SRAP 多态性的聚类分析结果与基 于表型特征的分类结果基本一致(李桂花等, 2012),SCoT 标记的分类结果与熟期分类结果比 较一致(史卫东等,2015),但分子标记聚类分析与 表型分类也存在不一致的情况(孙雪梅等,2010; 李桂花等,2012),说明菜心除了具有 DNA 序列变 化之外,还具有不依赖于 DNA 序列的表观遗传变 化,这种表观遗传变化并不能被基因组标记检测 出来,因此,有必要开展菜心表观遗传多样性的研 究,以提高鉴定效率和准确性。

DNA 甲基化不改变 DNA 序列的遗传修饰,在减数分裂和有丝分裂阶段可以稳定遗传(Kakutani et al., 1999),因而成为植物最重要的表观遗传标记。DNA 甲基化可以发生在所有序列环境中,包括对称的 CG 和 CHG 序列以及非对称的 CHH 序列(Chan et al., 2005),检测 CG 序列的甲基化状态常用甲基化敏感扩增多态性(methylationsensitive amplification polymorphism, MSAP), MSAP技术以其简单可靠及费用较低等优点,已广泛应用于拟南芥、甘蓝、芥蓝和油菜等十字花科植物的DNA 甲基化分析(Cervera et al., 2002;陆光远等, 2005; Salmon et al., 2008; 史卫东等, 2012; Zhang et al., 2013),基于荧光标记引物扩增的 F-MSAP也已应用于辣椒、鸡和牡蛎等动植物的 DNA 甲基

化分析(徐青等,2005;姜群等,2014;徐小万等,2021)。

本研究旨在通过检测 49 份菜心的 DNA 甲基 化水平和模式变化,揭示菜心表观遗传多样性形 成的机理,为进一步提高杂交育种鉴定准确性和 效率提供了理论基础和技术支持。

1 材料与方法

1.1 材料

1.2 方法

基因组 DNA 的提取:采用 CTAB 法提取基因组总 DNA。F-MSAP: Taq DNA 聚合酶、缓冲液、dNTP 和荧光引物均由北京鼎国昌盛生物技术有限责任公司提供。酶切连接一步法反应体系: DNA(50 ng·μL¹)4 μL, Adapter 1 μL, EcoR I/Msp I 或 EcoR I/Hpa II 2 μL, 10 X Reaction buffer 2.5 μL, 10 mmol·L¹ ATP 2.5 μL, T4 Ligase 1 μL, H, O 7 μL。分别用 EcoR I/Msp I 组合、EcoR I/

1359

Hpa II 组合对同一基因组 DNA 酶切,混匀后离心数秒,37 ℃保温 5 h,8 ℃保温 4 h,4 ℃过夜。预选 扩增反应:反应体系 25 μL 为 DNA 2 μL、预扩增引物 1 μL、dNTPs 0.5 μL、10 X PCR buffer 2.5 μL、 Taq 酶 0.5 μL、ddH₂O 18.5 μL。离心数秒,反应条件:94 ℃ 2 min;94 ℃ 30 s,56 ℃ 30 s,30 个循环;72 ℃ 80 s,72 ℃ 5 min;4 ℃。选择性扩增反应:预选扩增产物1:20 稀释后作为选扩增模板。反应体系 25 μL; DNA 2 μL,10 X PCR buffer 2.5 μL, dNTP 0.5 μL,EcoR I 引物 1 μL,Hpa II / Msp I 引物 1 μL,Taq 酶 0.5 μL,ddH₂O 17.5 μL。反应条件:94 ℃ 30 s,65 ℃ 30 s,72 ℃ 80 s;每轮循环温度递减 0.7 ℃,12 个循环;94 ℃ 30 s,55 ℃ 30 s,72 ℃ 80 s,23 个循环;72 ℃ 10 min,4 ℃。接头及引物序列见表 1。

数据读取及统计分析:将选择性扩增产物进行聚丙烯酰胺凝胶电泳,使用 ABI377 测序仪检测,通过 GENESCAN 软件分析,按照"无带为 0,有

带为1"记录数据矩阵。利用软件 Excel 2007 计算 甲基化多态性比例和甲基化类型,将 DNA 甲基化 模式分为四种类型: I 型为 Hpa II 和 Msp I 双酶切 的(1,1),表示 CCGG 位点未甲基化; **II** 型为Hpa **II** 酶切, Msp I 不能酶切的(1,0), 表示 CCGG 位点 C 外侧半甲基化;Ⅲ型为 Hpa Ⅱ 不能酶切, Msp Ⅰ 酶 切的(0,1),表示 CCGG 位点内侧 C 全甲基化; Ⅳ 型为 Hpa Ⅱ和 Msp Ⅰ都不能酶切的(0,0),表示抑 制全甲基化 CCGG 位点酶切,也可能是突变位点。 利用软件 POPGENE 1.32 进行表观遗传多样性分 析,统计多态性位点百分率(P%)、Nei's 基因多样 性指数、Shannon 多样性指数、Nei's 遗传距离、遗 传相似系数和基因流等。利用软件 MEGA 4.0 按 照 UPGMA 方法进行聚类分析。利用软件 GenAlEx 6.41 进行主成分分析和 AMOVA 分析。 引物多态信息量 (polymorphism information content, PIC),公式为 $PIC = 1 - \sum f_i^2$,式中 f_i 表示第 i 个基因型频率。

表 1 MSAP 扩增接头和引物序列(HM: Hpa II/Msp I)
Table 1 Adaptors and primer sequences used for MSAP amplifications (HM: Hpa II/Msp I)

接头序列 Adaptor sequence		选扩增引物 Selective amplification primer			
EcoR I-adapter I	CTCGTAGACTGCGTACC	E1	GACTGCGTACCAATTCAAC		
EcoR I-adapter II	AATTGGTACGCAGTC	E2	GACTGCGTACCAATTCAAG		
Hpa ∏∕Msp I-adapter I	GATCATGAGTCCTGCT	E4	GACTGCGTACCAATTCACT		
Hpa II∕Msp I -adapeter II	Hpa II / Msp I -adapeter II CGAGCAGGACTCATGA		GACTGCGTACCAATTCACG		
预选扩增引物 Pre-selective amplification primers		E7	GACTGCGTACCAATTCATC		
EcoR I +A	GACTGCGTACCAATTCA	H1	ATCATGAGTCCTGCTCGGTCG		
Hpa II /Msp I +0	GACTGCGTACCAATTCA	H2	ATCATGAGTCCTGCTCGGTTA		
		НЗ	ATCATGAGTCCTGCTCGGTGA		

2 结果与分析

2.1 DNA 甲基化多态性分析

利用 8 对条带清晰和多态性较好的引物进行 49 份菜心的 F-MSAP 扩增,一共扩增出 1 728 条带, 其中多态性条带 1 479 条,多态性比例为 86%。8 对 引物的多态性条带分别为 196、186、200、173、188、200、200、178 条,平均为 190 条,多态性比例为 88%, PIC 值分别为 0.230 4、0.201 2、0.247 8、

0.237 3、0.244 7、0.241 8、0.234 0、0.224 6,均值为 0.232 7,多态性位点的 PIC 值均位于 0~0.5 之间。按照总平均、自交系、品种和杂种进行分类分析,49 份菜心、7 份自交系亲本、8 份双自交系杂种、17 份单自交系杂种、7 份商品种、10 份商品种杂种的平均 多态性分别为 68.15%、65.33%、68.55%、67.25%、69.54%、70.09%,表明 F-MSAP 检测效率较高,菜心 DNA 甲基化多态性较高,商品种的 DNA 甲基化多态性比自交系及其杂种高,杂种的 DNA 甲基化多态性比亲本高,杂交可以提高 DNA 甲基化多态性。

2.2 表观遗传多样性分析

遗传多样性分析显示,49 份菜心的平均表观 观察等位基因数、有效等位基因数、Shannon 多样 性指数、期望杂合度分别为 1.702 0、1.201 0、 0.142 7、0.241 0,7 份自交系亲本分别为 1.668 0、 1.190 0、0.135 4、0.228 9,8 份双自交系杂种分别 为1.682 9、1.188 9、0.135 4、0.230 1,17 份单自交 系杂种分别为 1.707 5、1.212 0、0.148 7、0.249 1,7 份商品种分别为1.7295、1.2020、0.1435、 0.243 4,10 份商品种杂种分别为 1.712 1、1.200 0、 0.143 4、0.243 2。 结果显示, 双自交系杂种的 Shannon 多样性指数和期望杂合度分别等于和大 于自交系亲本,单自交系杂种两者均大于自交系 亲本,商品种与商品种杂种两者变化很小,表明菜 心表观遗传多样性较低,自交系杂种的表观遗传 多样性比亲本高,单自交系杂种的表观遗传多样 性比双自交系杂种高,杂交能够增加自交系杂种 的表观遗传差异。49 份菜心、7 份自交系亲本、8 份双自交系杂种、17份单自交系杂种、7份商品 种、10份商品种杂种的表观遗传距离分别为 0.009 4、0.009 5、0.009 4、0.009 4、0.008 6 和 0.009 6,结果显示,自交系亲本之间的表观遗传距 离大于自交系杂种和商品种,单、双自交系杂种之 间相同,但均小于商品种,商品种杂种大于商品 种,表明自交增加自交系亲本的表观遗传距离,杂 交增加商品种杂种的表观遗传距离。AMOVA分 析表明,表观遗传变异主要来源于种内(96%),种 间较少(4%)(P=0.036)。基因流为8.681 5,大于 1,表明菜心均质化严重,遗传分化受到抑制,大部 分遗传变异来源于种内,只有少量的遗传变异存 在于种间。

2.3 DNA 甲基化分析

由表 2 可知, DNA 甲基化水平分析显示的 49 份菜心、7 份自交系亲本、8 份双自交系杂种、17 份单自交系杂种、7 份商品种、10 份商品种杂种的甲基化率分别为 68.14%、65.26%、68.99%、67.39%、69.86%、69.29%。 DNA 甲基化模式分析显示的未甲基 化率分别为 31.86%、34.74%、31.01%、32.61%、30.14%、30.71%, 半甲基 化率分别为 33.18%、32.54%、37.80%、31.09%、33.01%、33.67%,全甲基化率分别为 34.96%、32.72%、31.20%、36.30%、36.85%、35.62%。结果显示,49 份菜心的 DNA 甲基化水平较高,全甲基化水平高

于未甲基化和半甲基化,以全甲基化模式为主,自交系杂种的 DNA 甲基化水平比亲本高,其中 7 份自交系未甲基化水平升高导致甲基化水平降低,8 份双自交系杂种去甲基化水平升高,17 份单自交系杂种全甲基化升高造成甲基化水平升高,7 份商品种和 10 份商品种杂种的 DNA 甲基化水平和模式变化很小,表明自交能够降低 DNA 甲基化水平,杂交通过 DNA 甲基化模式变化增加了自交系杂种的 DNA 甲基化水平。

2.4 聚类分析

如图 1 所示,利用 UPGMA 聚类分析方法,约 在 Nei's 遗传距离 0.42 处将 49 份菜心分成五类。 第一类 7 份包括 1 号、16 号、18 号、19 号、20 号、 21 号和 22 号,其中 1 号是 19 号、20 号、21 号、22 号的母本,'特青60天粗条菜心'是16号、18号的 母本。第二类 2 份包括 38 号和 44 号, '绿宝 701' 分别是38号的父本和44号的母本。第三类14份 包括 2 号、5 号、6 号、8 号、9 号、10 号、11 号、15 号、23号、35号、36号、39号、46号和47号,其中 2 号是 23 号的母本,6 号是 35 号、36 号的母本, '桂柳十月柳叶菜心'是 15 号和 47 号的父本。第 四类 11 份包括 12 号、14 号、17 号、24 号、37 号、 40 号、41 号、42 号、43 号、45 号和 48 号,其中'绿 宝 701' 是 41 号、42 号、43 号和 45 号的母本, '绿 宝 701'是 17 号、40 号和 37 号的父本、14 号是 48 号的母本。第五类 15 份包括 3 号、4 号、7 号、13 号、25号、26号、27号、28号、29号、30号、31号、 32 号、33 号、34 号和 49 号, 其中 3 号是 25 号、26 号的母本,4号是27号的母本,5号是29号、30 号、31号、32号、33号和34的母本, '绿宝701'是 28 号、33 号和 49 号的父本。

14个品种分散在各类中,35份杂种倾向于按照母本亲缘关系分类,表明杂种更多地遗传了母本的 DNA 甲基化状态,母本 DNA 甲基化对杂种表观遗传多样性具有较大影响。

2.5 主成分分析

利用 GenAlEx 6.41 软件包中的 PCA 模块进行 主成分分析(图 2),结果显示 49 份菜心明显分为 I、II、III、IV 和 V 五组,五组分布与聚类分析的五 类结果基本一致,表明 F-MSAP 检测效率很高,准 确性也很高。第一和第二主坐标的贡献率分别为 19.44% 和 11.81%,可解释 31.25%的表观遗传变异。

表 2 49 份菜心的表观遗传多样性以及 DNA 甲基化模式和水平

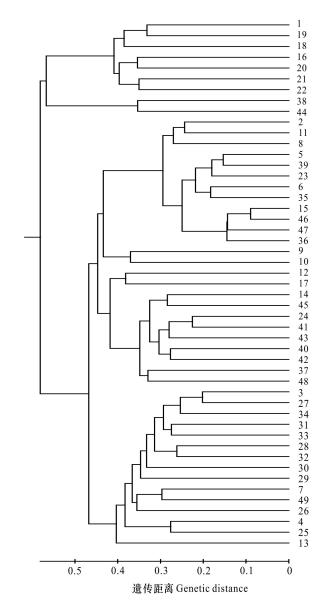
Table 2 Epigenetic diversity and DNA methylation pattern and level in 49 Chinese flowering cabbages

编号 Code /类型 Type	品种/亲本/杂种 Variety/Parent/Hybrid	I 型 Type I	II 型 Type II	III 型 Type III	总带数 Total number of bands	甲基化 总带数 Total number of methylation bands	甲基化敏感 扩增多态性 MSAP (%)
1	'澳洲 008 全年油绿甜菜心' 'Australia 008'	201	175	162	538	337	62.64
2	'澳洲超级 608' 'Australia 608'	110	126	112	348	238	68.39
3	'香港 45 天油青甜菜心' 'Hong Kong 45 Days'	110	140	162	412	302	73.30
4	'油青 12 号早菜心' 'youqing No.12'	144	127	142	413	269	65.13
5	'新西兰黄叶四九菜心' 'New Zealand sijiu'	112	77	132	321	209	65.11
6	'名优 308 超冠甜菜心王' 'mingyou 308 sweet'	91	105	75	271	180	66.42
7	'澳洲菜心' 'Australia'	145	90	105	340	195	57.35
8	'菜兴利国际新一代碧绿油菜心 49' 'caixingli sijiu'	115	113	118	346	231	66.76
9	'三九油青甜早菜心' 'sanjiu youqing'	145	123	130	398	253	63.57
10	'811 甜菜心' '811 sweet'	135	175	175	485	350	72.16
11	·油青四九甜菜心' 'youqing sijiu'	60	150	226	436	376	86.24
12	'油青甜菜心 50 天' 'youqing 50'	111	179	190	480	369	76.88
13	'柳尖叶 35 天甜菜心' 'liujianye 35'	194	123	124	441	247	56.01
14	'桂柳十月柳叶菜心' 'Gui Liu October'	179	175	145	499	320	64.13
15	'东莞 45 天油青菜心'ב桂柳十月柳叶菜心' 'Dong Guan 45 Days'בGui Liu October'	36	32	67	135	99	73.33
16	'特青 60 天粗条菜心'ב四九-19 号菜心' 'teqing 60 Days'בsijiu-19'	163	203	197	563	400	71.05
17	'特青 60 天粗条菜心'ב绿宝 701' 'teqing 60 Days'בlvbao 701'	121	149	132	402	281	69.90
18	'特青 60 天粗条菜心'ב桂柳十月柳叶菜心' 'teqing 60 Days'בGui Liu October'	176	179	220	575	399	69.39
19	'澳洲 008 全年油绿甜菜心'ב东莞 45 天油青菜心' 'Australia 008'בDong Guan 45 Days'	184	212	193	589	405	68.76
20	'澳洲 008 全年油绿甜菜心'ב四九-19 号菜心' 'Australia 008'בsijiu-19'	180	176	180	536	356	66.42
21	澳洲 008 全年油绿甜菜心'ב新西兰黄叶四九菜心' 'Australia 008'בNew Zealand sijiu'	165	197	201	563	398	70.69
22	'澳洲 008 全年油绿甜菜心'ב绿宝 701' 'Australia 008'בlvbao 701'	169	156	208	533	364	68.29
23	'澳洲超级 608'ב东莞 45 天油青菜心' 'Australia 608'בDong Guan 45 Days'	117	71	88	276	159	57.61
24	'澳洲超级 608'ב新西兰黄叶四九菜心' 'Australia 608'בNew Zealand sijiu'	180	186	141	507	327	64.50
25	'香港 45 天油青甜菜心'ב东莞 45 天油青菜心' 'Hong Kong 45 Days'בDong Guan 45 Days'	133	152	183	468	335	71.58

续表 2

		- 天 八 4					
编号 Code /类型 Type	品种/亲本/杂种 Variety/Parent/Hybrid	I 型 Type I	II 型 Type II	III 型 Type III	总带数 Total number of bands	甲基化 总带数 Total number of methylation bands	甲基化敏感 扩增多态性 MSAP (%)
26	'香港 45 天油青甜菜心'ב新西兰黄叶四九菜心' 'Hong Kong 45 Days'בNew Zealand sijiu'	114	177	170	461	347	75.27
27	'油青 12 号早菜心'ב东莞 45 天油青菜心' 'youqing No.12'בDong Guan 45 Days'	96	120	171	387	291	75.19
28	'四九-19 号菜心 ב绿宝 701 'sijiu-19'בlybao 701'	140	147	184	471	331	70.28
29	'新西兰黄叶四九菜心'ב东莞 45 天油青菜心' 'New Zealand sijiu'בDong Guan 45 Days'	136	139	194	469	333	71.00
30	'新西兰黄叶四九菜心'ב特青 60 天粗条菜心' 'New Zealand sijiu'בteqing 60 Days'	131	172	151	454	323	71.15
31	'新西兰黄叶四九菜心'ב名优 308 超冠甜菜心王' 'New Zealand sijiu'בmingyou 308 sweet'	161	127	145	433	272	62.82
32	'新西兰黄叶四九菜心'ב快大 28 天油青甜菜心' 'New Zealand sijiu'בkuaida 28 Days'	162	137	157	456	294	64.47
33	'新西兰黄叶四九菜心'ב绿宝 701' 'New Zealand sijiu'בlvbao 701'	133	126	126	385	252	65.45
34	'新西兰黄叶四九菜心'ב桂柳十月柳叶菜心' 'New Zealand Sijiu'בGui Liu October'	81	155	101	337	256	75.96
35	'名优 308 超冠甜菜心王'ב东莞 45 天油青菜心' 'mingyou 308 sweet'בDong Guan 45 Days'	91	100	79	270	179	66.30
36	'名优 308 超冠甜菜心王'ב新西兰黄叶四九菜心' 'mingyou 308 sweet'בNew Zealand sijiu'	71	73	60	204	133	65.20
37	'名优 308 超冠甜菜心王'ב绿宝 701' 'mingyou 308 sweet'בlybao 701'	168	138	189	495	327	66.06
38	'澳洲 50 短柄粗条菜心'ב绿宝 701' 'Australia 50 Days'בlvbao 701'	214	150	166	530	316	59.62
39	'快大 28 天油青甜菜心'ב新西兰黄叶四九菜心' 'kuaida 28 Days'בNew Zealand sijiu'	82	95	184	361	279	77.29
40	'快大 28 天油青甜菜心'ב绿宝 701' 'kuaida 28 Days'בlvbao 701'	147	139	191	477	330	69.18
41	'绿宝 701'ב东莞 45 天油青菜心' 'lvbao 701'בDong Guan 45 Days'	135	204	138	477	342	71.70
42	'绿宝 701'ב特青 60 天粗条菜心' 'lvbao 701'בteqing 60 Days'	149	155	102	406	257	63.30
43	'绿宝 701'ב澳洲 008 全年油绿甜菜心' 'lvbao 701'בAustralia 008'	132	149	186	467	335	71.73
44	'绿宝 701'ב名优 308 超冠甜菜心王' 'lvbao 701'בmingyou 308 sweet'	192	142	206	540	348	64.44
45	'绿宝 701'ב澳洲 50 短柄粗条菜心' 'lvbao 701'בAustralia 50 Days'	150	123	158	431	281	65.20
46	'绿宝 701'ב快大 28 天油青甜菜心' 'lvbao 701'בKuaida 28 Days'	33	83	36	152	119	78.29
47	'澳洲菜心'ב桂柳十月柳叶菜心' 'Australia'בGui Liu October'	72	81	46	199	127	63.82
48	'桂柳十月柳叶菜心'ב新西兰黄叶四九菜心' 'Gui Liu October'בNew Zealand sijiu'	147	212	133	492	345	70.12
49	'桂柳十月柳叶菜心'ב绿宝 701' 'Gui Liu October'בlvbao 701'	153	105	125	383	230	60.05
49 份화 49 Chi	nese Average number of bands	134	140	147	421	287	_
flowerin cabbag		6 566	6 840	7 200	5 20 61	2 14 046	_

4去	丰	1
Z抗.	ᅏ	- 2


		续表 2	2				
编号 Code /类型 Type	品种/亲本/杂种 Variety/Parent/Hybrid	I 型 Type I	II 型 Type II	III 型 Type III	总带数 Total number of bands	甲基化 总带数 Total number of methylation bands	甲基化敏感 扩增多态性 MSAP (%)
	甲基化百分率 Percentage of methylation (%)	31.86	33.18	34.96	_	68.14	68.15
7 份自交 系亲本	平均带数 Average number of bands	135	127	128	390	254	_
Seven inbred parents	总带数 Total number of bands	948	888	893	2 729	1 781	_
	甲基化百分率 Percentage of methylation (%)	34.74	32.54	32.72	_	65.26	65.33
8 份双自交系 杂种	平均带数 Average number of bands	124	151	125	400	276	_
Eight double inbred hybrids	总带数 Total number of bands	991	1 208	997	3 196	2 205	_
	甲基化百分率 Percentage of methylation (%)	31.01	37.80	31.20	_	68.99	68.55
17 份单自交系 杂种	平均带数 Average number of bands	143	137	160	439	296	_
17 single inbred hybrids	总带数 Total number of bands	2 293	2 186	2 552	7 031	4 738	_
	甲基化百分率 Percentage of methylation (%)	32.61	31.09	36.30	_	67.39	67.25
7 份商品种 Seven commercial varieties	平均带数 Average number of bands	129	141	158	428	299	_
	总带数 Total number of bands	904	990	1 105	2 999	2 095	_
	甲基化百分率 Percentage of methylation (%)	30.14	33.01	36.85	_	69.86	69.54
10 份商品种 杂种 Ten commercial hybrids	平均带数 Average number of bands	130	143	151	423	293	_
	总带数 Total number of bands	1 430	1 568	1 659	4 657	3 227	_
	甲基化百分率 Percentage of methylation (%)	30.71	33.67	35.62	_	69.29	70.09

3 讨论与结论

3.1 DNA 甲基化多态性分析

经典的 MSAP 利用聚丙烯酰胺凝胶电泳检测 DNA 甲基化多态性,F-MSAP 则是利用荧光标记引物结合毛细管电泳检测,因此检测效率和灵敏度得以较大提高,徐青等(2005)利用 F-MSAP 检测发现鸡 F₁代的甲基化多态模式约有 95%来自亲本,变异的甲基化位点约 5%,姜群等(2014)发现 F-MSAP 检测牡蛎的效率是 MSAP 的 2 倍以上,多态性检测率提升了 9%。F-MSAP 不足之处是只能识别基因组的 CCGG 位点,不能检测 CHG 序列以

及非对称的 CHH 序列,实际的甲基化水平有所低估(McClelland et al., 1994; Salmon et al., 2008), 另外 MSAP 基于 AFLP 技术开发,检测的多态性片段大小有所限制。与十字花科亲缘植物相比,49份菜心的 DNA 甲基化多态性较高,高于拟南芥(24%~34%)、白菜幼苗茎尖(30.42%)、甘蓝(53.3%~60.7%)、油菜种子(15.7%)、芥蓝(47%)、甘蓝型油菜基因渗入系(33.4%~39.8%)的 DNA 甲基化多态性(Cervera et al., 2002; Li et al., 2002; 陆光远等, 2005; Salmon et al., 2008; 史卫东等, 2012; Zhang et al., 2013), 也高于菜心ISSR(56.31%)、SRAP(40.2%)、SCoT(36%)的基因组多态性(孙雪梅等, 2010; 李桂花等, 2012; 史

具体编号见表 2。下同。 See Table 2 for specific numbers. The same below.

图 1 基于遗传距离的 49 份菜心的 UPGMA 聚类图 Fig. 1 UPGMA dendrogram of 49 Chinese flowering cabbages based on Nei's genetic distance

卫东等,2015)。与菜心 AFLP 和 SCoT 分析相比, F-MSAP 进一步提高了鉴定效率和准确性(Shi et al.,2011; 史卫东等,2015),主成分分析也比较一致,表明 F-MSAP 可以作为一种检测菜心 DNA 甲基化的有效方法,极大地提高菜心 DNA 甲基化的检测效率和灵敏度。

3.2 表观遗传多样性分析

Shannon 多样性指数是评价种内和种间遗传

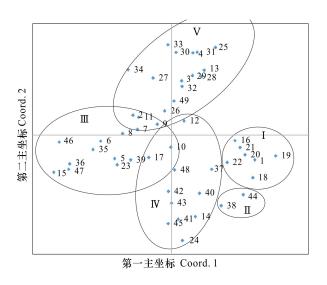


图 2 49 份菜心主成分分析
Fig. 2 Principal coordinates analyses(PcoA) of
49 Chinese flowering cabbages

多样性水平的指标,其值越大表示遗传多样性越 高,49 份菜心的表观 Shannon 多样性指数 (0.1427) 小 于 基 因 组 ISSR (0.229)、AFLP (0.472)和 SCoT(0.217)的 Shannon 多样性指数 (孙雪梅等, 2010; Shi et al., 2011; 史卫东等, 2015),表观遗传距离(0.0094)小于ISSR(0.029~ 0.344)、AFLP(0.112)、SCoT(0.428)等基因组标 记的遗传距离(孙雪梅等,2010; Shi et al., 2011; 史卫东等,2015),据此推测菜心表观遗传多样性 较低且低于基因组遗传多样性,与芥蓝的表观遗 传多样性水平较低的结果相一致(史卫东等, 2012),与西瓜、水稻和辣椒的基因组甲基化多样 性高于遗传多样性的结果不同(Nimmakayala et al., 2011;彭海等, 2014;徐小万等, 2021),这可能 与不同的比较方法有关,也可能与不同物种之间 表观遗传多样性和基因组遗传多样性存在较大的 差异有关。本研究还发现菜心自交系亲本的表观 遗传距离大于商品种,表明自交增加了表观遗传 多样性水平,丰富了遗传背景,商品种表观遗传多 样性最低,但商品种杂交增加了表观遗传多样性。

3.3 DNA 甲基化分析

研究表明在不同生态型拟南芥上 35%~43%的 CCGG 位点为 DNA 甲基化敏感位置,而在同一生态型内则高度保守(Cervera et al., 2002),甘蓝品种或品系具有更多的甲基化片段(Salmon et al.,

2008),甘蓝型油菜基因渗入系呈现高频率的高甲基化(Zhang et al., 2013)。本研究菜心自交系亲本、自交系杂种、商品种和商品种杂种的未甲基化、半甲基化和全甲基化比例各占 1/3 以上,但全甲基化在商品种较高,表明菜心以全甲基化模式为主,菜心与拟南芥、甘蓝具有相似的甲基化变化,这是否是十字花科植物的普遍现象,还有待研究。

菜心自交系的 DNA 甲基化水平降低,与大白 菜自交系的 DNA 甲基化水平降低相一致(Liu et al., 2018),从甲基化组角度说明菜心与大白菜亲 缘关系较近,因而具有相似的表观遗传变化。拟 南芥杂种的甲基化模式变化经常发生在亲本之间 的差异甲基化区域(Greaves et al., 2012), 亲本之 间的甲基化差异可能是亲本和杂种之间甲基化差 异的主要原因(Shen et al., 2012)。菜心单自交系 杂种和双自交系杂种的甲基化水平都比亲本高, 与拟南芥 C24/Landsberg F₁杂种的甲基化水平增 加相一致 (Greaves et al., 2012), 但两个杂种的 DNA 甲基化模式变化有所不同,因此造成亲本自 交系和商品种的 DNA 甲基化差异。菜心自交系 随着不断自交纯合,基因组杂合性减低,表现为 DNA 甲基化水平降低和未甲基化水平升高,菜心 商品种为开放授粉种子,基因组杂合性较高,表现 为全甲基化水平较高。据此推测菜心单自交系杂 种的全甲基化水平较高可能是由于自交系与商品 种杂交造成的,与拟南芥正反交 F,中一个亲本等 位基因的甲基化水平改变为另一个亲本甲基化水 平有相似之处(Greaves et al., 2012)。菜心双自 交系杂种表现为高水平的去甲基化,与小麦黑麦 远缘杂交后代的半甲基化水平极显著高于双亲本 的半甲基化水平有相似之处(朱朝阳等,2018)。 DNA 去甲基化的功能和机制是生物学倍受争议的 研究领域,活跃的 DNA 去甲基化对修剪基因组的 甲基化模式很重要,甲基化和去甲基化的动态调 控对于保持植物表观基因组的可塑性也很重要 (Zhu et al., 2007)。菜心亲本差异、自交或杂交引 起后代 DNA 甲基化模式和水平变化,表明菜心基 因组可塑性可能很强,表观遗传多样性形成机理 还有待深入研究。

3.4 杂交对表观遗传多样性的影响

表型与分子标记都可以检测菜心亲缘关系, 但两者的鉴定结果并不十分相符,可能的原因包 括品种资源的遗传背景比较复杂,基因组分子标 记优化不足或不适合,以及不能检测出表观遗传 变化等。本研究 49 份菜心的聚类结果清晰可靠, 14 份菜心品种呈现较大的表观遗传变化,其中7 份自交系亲本分散在各类中,与自交增加了表观 遗传距离相一致,说明自交增加了自交系亲本的 表观遗传差异。研究表明拟南芥互交杂种具有完 全相同的遗传构成,杂交后母本和父本基因组可 能不会平等地影响杂种 DNA 甲基化的变化,杂种 的甲基化重塑可能有利于杂种优势(Shen et al., 2012)。本研究 35 份自交系杂种和商品种杂种分 布在各类中,倾向于按照母本亲缘关系分类,与杂 交稻甲基化状态与母本较近的结果相同(彭海等, 2014),与拟南芥不同基因型的甲基化多态性不相 关,亲缘关系紧密的拟南芥并不归为一类的结果 不同(Cervera et al., 2002), 与拟南芥的基因甲基 化与亲缘关系聚类分析结果不相关的结果不同 (Matthew et al., 2007), 菜心母本亲缘关系可能对 杂种表观遗传多样性具有较大影响,因此在利用 不同菜心亲本配组时,要注重对母本的选择,依据 母本亲缘关系对杂种后代分类可能会起到事半功 倍的效果,对菜心种质资源研究和育种具有极其 重要的指导意义。

综上所述,通过 F-MSAP 检测菜心 DNA 甲基 化变化,揭示了菜心表观遗传多样性形成机理,分 析和预测了杂种后代的表观遗传差异,提高了鉴 定效率和准确性,为进一步开展杂交育种提供了 理论基础和技术支持。

参考文献:

CERVERA MT, RUIZ-GARCÍA L, MARTÍNEZ-ZAPATER J, et al., 2002. Analysis of DNA methylation in *Arabidopsis thaliana* based on methylation-sensitive AFLP markers [J]. Mol Genet Genom, 268: 543-552.

CHAN WL, HENDERSON IR, JACOBSEN SE, et al., 2005. Gardening the genome: DNA methylation in *Arabidopsis thaliana* [J]. Nat Rev Genet, 6(5): 351–360.

GREAVES IK, GROSZMANN M, HUA Y, et al., 2012. Trans chromosomal methylation in *Arabidopsis* hybrids [J]. Proc Natl Acad Sci USA, 109(9): 3570-3575.

JIANG Q, YU H, KONG LF, et al., 2014. Analysis of DNA methylation in different tissues of the pacific oyster (*Crassostrea gigas*) with the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP)

- [J]. Chin Fish Sci, 21(4): 676-683. [姜群, 于红, 孔令锋, 等, 2014. 太平洋牡蛎不同组织甲基化的分析[J]. 中国水产科学, 21(4): 676-683.]
- KAKUTANI T, MUNAKATA K, RICHARDS EJ, et al., 1999. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by *ddm1* mutation of *Arabidopsis thaliana* [J]. Genetics, 151(2): 831–838.
- LI GH, CHEN HC, ZHANG Y, et al., 2012. Genetic diversity of *Brassica parachinensis* germplasm revealed by SRAP analysis [J]. Chin Agric Sci Bull, 28(4): 110-114. [李桂花,陈汉才,张艳,等, 2012. 菜心种质资源遗传多样性的 SRAP 分析 [J]. 中国农学通报, 28(4): 110-114.]
- LI ML, WANG QM, ZHU ZJ, et al., 2002. Studies on the changes of DNA methylation level, GA content and protein in non-heading Chinese cabbage during vernalization [J]. Acta Hortic Sin, 29(4): 353-357. [李梅兰, 汪俏梅, 朱祝军, 等, 2002. 春化对白菜 DNA 甲基化、GA 含量及蛋白质的影响 [J]. 园艺学报, 29(4): 353-357.]
- LIU Y, XU C, TANG XB, et al., 2018. Genomic methylation and transcriptomic profiling provides insights into heading depression in inbred *Brassica rapa* L. ssp. *pekinensis* [J]. Gene, 665:119-126.
- LU GY, WU XM, CHEN BY, et al., 2005. Analysis on genomic DNA methylation modification of seed germination *Brassica* by methylation-sensitive amplification polymorphism [J]. Chin Sci Bull, 50(24): 2750-2756. [陆光远, 伍晓明, 陈碧云,等, 2005. 油菜种子萌发过程中 DNA 甲基化的 MSAP 分析 [J]. 科学通报, 50(24): 2750-2756.]
- MCCLELLAND M, NELSON M, RASCHKE E, et al., 1994. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases [J]. Nucl Acids Res, 22(17): 3640-3659.
- NIMMAKAYALA P, VAJJA G, GIST RA, et al., 2011. Effect of DNA methylation on molecular diversity of watermelon heirlooms and stability of methylation specific polymorphisms across the genealogies [J]. Euphytica, 177(1): 79–89.
- PENG H, JIANG GH, ZHANG J, et al., 2014. DNA methylation polymorphism and stability in Chinese indica hybrid rice [J]. Sci Sin Vit, 44(1): 45-53. [彭海, 江光 怀, 张静, 等, 2014. 中国杂交籼稻 DNA 甲基化多样性与遗传稳定性 [J]. 中国科学: 生命科学, 44(1): 45-53.]
- SALMON A, CLOTAULT J, JENCZEWSKI E, et al., 2008. *Brassica oleracea* displays a high level of DNA methylation polymorphism [J]. Plant Sci, 174(1): 61–70.
- SHEN HS, HE H, LI JG, et al., 2012. Genome-wide analysis of DNA methylation and gene changes in two *Arabidopsis* ecotypes and their reciprocal hybrids [J]. Plant Cell, 24(3): 875–892.
- SHI WD, HUANG RK, ZHOU SM, et al., 2011. Genetic diversity of 30 Cai-xins (*Brassica rapa* var. *parachinensis*)

- evaluated based on AFLP molecular data [J]. Mol Plant Breed, 2(7): 41-47.
- SHI WD, HUANG RK, CHEN ZD, et al., 2012. The epigenetic genetic diversity of 18 Chinese kales analyzed by msap when initiated flowering [J]. Genom Appl Biol, 31 (5): 505-512. [史卫东, 黄如葵, 陈振东, 等, 2012. 利用 MSAP 分析 18 个芥蓝齐口期的表观遗传多样性 [J]. 基因组学与应用生物学, 31(5): 505-512.]
- SHI WD, JU XX, ZHANG L, et al., 2015. Analysis on genetic diversity of chinese flowering cabbage (*Brassica campestris* L. ssp. *chinensis* var. *utilis* Tsen et Le) germplasms based on SCoT markers [J]. JS Agric, 46(8): 1350-1355. [史卫东, 琚茜茜,张力,等, 2015. 菜心种质资源遗传多样性的 SCoT分析 [J]. 南方农业学报,46(8): 1350-1355.]
- SUN XM, QIAO AM, SUN M, et al., 2010. ISSR analysis of genetic diversity of 27 flowering Chinese cabbage [J]. J SW Norm Univ (Nat Sci Ed), 35(1): 119-123. [孙雪梅, 乔爱民, 孙敏, 等, 2010. 27 个菜心品种遗传多样性的分析 [J]. 西南师范大学学报(自然科学版), 35(1): 119-123.]
- MATTHEW WV, MILOS T, ZACHARY L, et al., 2007. Epigenetic natural variation in *Arabidopsis thaliana* [J]. Plos Biol, 5(7): 1617–1629.
- XU Q, SUN DX, ZHANG Y, et al., 2005. F-MSAP: A practical system to detect methylation in chicken genome [J]. Chin Sci Bull, 50(17): 1874-1878. [徐青, 孙东晓, 张沅, 等, 2005. 一种检测鸡基因组甲基化的新方法:F-MSAP [J]. 科学通报, 50(17): 1874-1878.]
- XU XW, XIA BB, WU ZM, et al., 2021. Surveying DNA epigenetic diversity in the foreign hot pepper germplasms [J]. Hubei Agric Sci, 60(6): 76-81. [徐小万,夏碧波,吴智明,等,2021. 国外引进辣椒 DNA 表观遗传多样性分析「J]. 湖北农业科学,60(6): 76-81.]
- ZHU CY, LI T, GAO Y, et al., 2018. DNA methylation-sensitive amplification polymorphism analysis of distant hybrid progeny between wheat and rye [J]. Mol Plant Breed, 16(3): 859-864. [朱朝阳,李桐,高玉,等, 2018. 小麦与黑麦远缘杂交后代 DNA 甲基化敏感扩增多态性分析 [J]. 分子植物育种, 16(3): 859-864.]
- ZHU JH, KAPOOR A, SRIDHAR VV, et al., 2007. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in *Arabidopsis* [J]. Curr Biol, 17 (1): 54–59.
- ZHANG XL, GE XH, SHAO YJ, et al., 2013. Genomic change, retrotransposon mobilization and extensive cytosine methylation alteration in *Brassica napus* introgressions from two intertribal hybridizations [J]. PLoS ONE, 8(2): 1–10.

(责任编辑 周翠鸣)