首页 | 官方网站   微博 | 高级检索  
     


Variable Constraints on the Principal Immunodominant Domain of the Transmembrane Glycoprotein of Human Immunodeficiency Virus Type 1
Authors:Rastine Merat  Herve Raoul  Thierry Leste-Lasserre  Pierre Sonigo  and Gianfranco Pancino
Affiliation:Génétique des Virus (ICGM-CNRS UPR0415), Institut Cochin de Génétique Moléculaire, 75014 Paris, France.
Abstract:Lentiviruses have in their transmembrane glycoprotein (TM) a highly immunogenic structure referred to as the principal immunodominant domain (PID). The PID forms a loop of 5 to 7 amino acids between two conserved cysteines. Previous studies showed that envelope (Env) glycoprotein functions of feline immunodeficiency virus (FIV) could be retained after extensive mutation of the PID loop sequence, in spite of its high conservation. In order to compare Env function in different lentiviruses, either random mutations were introduced in the PID loop sequence of human immunodeficiency virus type 1 (HIV-1) or the entire HIV-1 PID loop was replaced by the corresponding PID loop of FIV or simian immunodeficiency virus (SIV). In the macrophage-tropic HIV-1 ADA Env, mutations impaired the processing of the gp160 Env precursor, thereby abolishing viral infectivity. However, 6 of the 108 random Env mutants that were screened retained the capacity to induce cell membrane fusion. The SIV and FIV sequences and five random mutations were then introduced in the context of T-cell-line-adapted HIV-1 LAI which, although phenotypically distant from HIV-1 ADA, has an identical PID loop sequence. In contrast to the situation for HIV-1 ADA mutants, the cleavage of the Env precursor was unaffected in most HIV-1 LAI mutants. Such mutations, however, resulted in increased shedding of the gp120 surface glycoprotein (SU) from the gp41 TM. The HIV-1 LAI Env mutants showed high fusogenic efficiency. Three Env mutants retained the capacity to mediate virus entry in target cells, although less efficiently than the wild-type Env, and allowed the reconstitution of infectious molecular clones. These results indicated that in HIV-1, like FIV, the conserved PID sequence can be changed without impairing Env function. However, functional constraints on the PID of HIV-1 vary depending on the structural context of Env, presumably in relation to the role of the PID in the interaction of the SU and TM subunits and the stability of the Env complex.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号