首页 | 官方网站   微博 | 高级检索  
     


Modeling leakage kinetics from multilamellar vesicles for membrane permeability determination: application to glucose
Authors:Faure Chrystel  Nallet Frédéric  Roux Didier  Milner Scott T  Gauffre Fabienne  Olea David  Lambert Olivier
Affiliation:Centre de Recherche Paul-Pascal (Centre National de la Recherche Scientifique), UPR 8641, Pessac, France. faure@crpp-bordeaux.cnrs.fr
Abstract:The glucose permeability of bilayers formed from phosphatidylcholine, Brij30, and sodium octadecyl sulfate has been determined via an enzymatic reaction. Glucose is encapsulated in either uni- or multilamellar vesicles (MLV) and its concentration in the dispersion medium is monitored by spectrophotometry analysis through the rate of glucose oxidase-catalyzed reaction of glucose oxidation. A kinetic model of leakage, taking explicitly into account one, two, or n(w)-walls (n(w) > 1) for the vesicles and assuming an enzymatic Michaelis-Menten behavior, is proposed and used to fit the experimental data. The two-wall model was chosen to fit experimental data obtained on MLV since an average value of 1.7 bilayers was estimated for MLV by cryo-TEM imaging. A permeability value of 5.8 +/- 4.4 10(-9) cm/s was found. The proposed model is validated by the measurement of the bilayer permeability deduced from the modeling of glucose leakage from unilamellar vesicles with the same composition. In this latter case, a value of 8.3 +/- 0.7 10(-9) cm/s is found for the permeability, which is within the error bar of the value found with MLV.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号