首页 | 官方网站   微博 | 高级检索  
     


Gaucher disease: heterologous expression of two alleles associated with neuronopathic phenotypes.
Authors:M E Grace  A Berg  G S He  L Goldberg  M Horowitz  and G A Grabowski
Affiliation:Department of Pediatrics, Mount Sinai School of Medicine, New York, NY 10029-6574.
Abstract:To investigate the molecular basis for the distinct neuronopathic phenotypes of Gaucher disease, acid beta-glucosidases expressed from mutant DNAs in Gaucher disease type 2 (acute) and type 3 (subacute) patients were characterized in fibroblasts and with the baculovirus expression system in insect cells. Expression of the mutant DNA encoding a proline-for-leucine substitution at amino acid 444 (L444P) resulted in a catalytically defective, unstable acid beta-glucosidase in either fibroblasts from L444P/L444P homozygotes or in insect cells. This mutation was found to be homoallelic in subacute neuronopathic (type 3) Gaucher disease. In comparison, expression of the mutant cDNA encoding an arginine-for-proline substitution at amino acid 415 (P415R) resulted in an inactive and unstable protein in insect cells. This allele was found only in a type 2 patient with the L444P/P415R genotype. The substantial variation in the type 3 phenotype (L444P homozygotes) suggests the complex nature of the molecular basis of phenotypic variation in Gaucher disease. Yet, the association of neuronopathic phenotypes with alleles producing severely compromised (L444P) or functionally null (P415R) enzymes indicates that the effective level of residual activity at the lysosome is likely to be a major determinant of the severity of Gaucher disease.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号