首页 | 官方网站   微博 | 高级检索  
     


Reduced alphabet for protein folding prediction
Authors:Jitao T Huang  Titi Wang  Shanran R Huang  Xin Li
Affiliation:Department of Chemistry and National Laboratory of Elemento‐Organic Chemistry, Nankai University, Tianjin, People's Republic of China
Abstract:What are the key building blocks that would have been needed to construct complex protein folds? This is an important issue for understanding protein folding mechanism and guiding de novo protein design. Twenty naturally occurring amino acids and eight secondary structures consist of a 28‐letter alphabet to determine folding kinetics and mechanism. Here we predict folding kinetic rates of proteins from many reduced alphabets. We find that a reduced alphabet of 10 letters achieves good correlation with folding rates, close to the one achieved by full 28‐letter alphabet. Many other reduced alphabets are not significantly correlated to folding rates. The finding suggests that not all amino acids and secondary structures are equally important for protein folding. The foldable sequence of a protein could be designed using at least 10 folding units, which can either promote or inhibit protein folding. Reducing alphabet cardinality without losing key folding kinetic information opens the door to potentially faster machine learning and data mining applications in protein structure prediction, sequence alignment and protein design. Proteins 2015; 83:631–639. © 2015 Wiley Periodicals, Inc.
Keywords:protein folding  reduced alphabet  prediction  folding unit
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号